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Abstract. A set of one-loop vertex and box tensor integrals with massless internal particles has been
obtained directly without any reduction method to scalar integrals. The results with one or two massive
external lines for the vertex integral and zero or one massive external lines for the box integral are shown
in this report. Dimensional regularization is employed to treat any soft and collinear (IR) divergence. A
series expansion of tensor integrals with respect to an extra space-time dimension for the dimensional
regularization is also given. The results are expressed by very short formulas in a manner suitable for a

numerical calculation.

1 Introduction

The LHC (Large Hadron Collider) project [1] at CERN is
planned as the next-generation energy-frontier experiment.
One of the physics motivations of LHC experiments is to
discover the Higgs particle, which is the only one missing
ingredient in the standard model. In order to establish the
model completely, it is essential to find it and to inves-
tigate it in detail. It should also be important to search
for new phenomena beyond the standard model through
any tiny deviation in experimental observations from the-
oretical predictions. Further, not only searching for new
phenomena, but also performing precise measurements of
parameters included in the standard model is another im-
portant issue of LHC.

LHC has employed colliding proton—proton beams
in order to achieve beam energies as high as possible,
which should enhance the possibility to find new parti-
cles/phenomena. However, a proton machine must have a
large QCD background, since the proton is a composite
particle constructed by strongly interacting particles, such
as quarks and gluons. This veils signals with large back-
grounds. In order to extract as much physics information
as possible from experimental data contaminated by huge
backgrounds, the behavior of the background should be un-
derstood in detail. This implies that one should precisely
understand QCD, because it entirely governs the back-
ground.

The background of any proton—proton colliding exper-
iment must be completely predicted by QCD, in principle.
However, in fact, it is a very difficult task to make precise
predictions because of the large coupling constant of QCD.
Moreover the lowest level (tree-level) calculation does not

# e-mail: yoshimasa.kurihara@kek.jp

have any predictive power for the event rate, because there
is no good renormalization point well-defined experimen-
tally. We need higher order perturbation calculations for
precise predictions of the background behavior.

Loop integration is one of the critical issues for com-
puting these higher order corrections. In general, N-point
tensor and scalar integrals with massless internal lines in-
cluding an infrared (IR) divergence must be calculated
in QCD. Since an arbitrary number of dimensions must
be used in QCD to regulate any IR divergence, the usual
method for the standard model [2] cannot be used directly.
Various methods to reduce (N > 5)-point integrals into
(N — 1)-point integrals [4] with a dimensionally regulated
scheme are proposed. Then, all of the necessary (N > 5)-
point integrals can be expressed by a linear combination of
box (4-point) tensor integrals. Usually, box tensor integrals
are further reduced to 4- or less point scalar integrals, and
then numerically evaluated to obtain higher order correc-
tions. The IR finite box integrals are obtained in [5]; for the
IR divergent case, box integrals with zero or one external
mass are given in [6]. All IR divergent box integrals are
treated in [7] using the partial differential equation method.
Another approach to all possible box scalar integrals with
massless internal lines with zero to four external massive
lines is proposed for the IR divergent case [8] and the IR
finite case [9]. Recently, two independent formalisms were
proposed for calculating one-loop virtual corrections with
an arbitrary number of external legs [10,11].

We propose a new method to calculate tensor integrals
directly, and not to use a reduction method from tensor in-
tegrals to scalar ones in this report. A set of one-loop vertex
and box tensor integrals with massless internal particles is
given in terms of hypergeometric functions. Dimensional
regularization is employed to treat any IR divergence. A
series expansion of tensor integrals with respect to an extra
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space-time dimension in the dimensional regularization is
also given in this report. All results are expressed by very
short formulas with a suitable manner for numerical cal-
culations.

A general form of 3-point tensor integrals is given in
Sect. 2, and that of 4-point ones in Sect. 3. The obtained
results are numerically checked in Sect. 4. A numerical cal-
culation method for the hypergeometric function and their
series expansion with respect to an extra space-time di-
mension is given in Appendix A. The series expansion of
the general form of tensor integrals can be represented in
terms given in Appendix A. Those results are given in Ap-
pendix B.

2 Vertex integral
2.1 Massless one-loop vertex integral in n dimensions

The tensor integral of a massless one-loop vertex with rank
M < 3 in a space-time dimension of n = 4 — 2eyy can be
written as

) veov [ A"k K.k
T - BBy
poov = (iw) / (2m)" D1D>D;’

M

where
D; = k% +10,
Dy = (k + p2)* +10,
Dy = (k + p2 +p3)* +10,

and p; is the four momentum of an ¢th external particle
(incoming), k,, the loop momentum, and pgr the renormal-
ization energy scale. An infinitesimal imaginary part (i0) is

included to obtain analyticity of the integral T,E?’)y Momen-
tum integration can be performed using Feynman’s param-
eterization, which combines propagators. After momentum
integration, an ultraviolet pole is subtracted under some
renormalization scheme. Then space-time dimension is re-
placed as eyy — —eR to regulate an infrared pole. Finally,
the tensor integral is expressed in the following form [12]:

T(3 Z L. yJ3 p17p27p3a (1)7n3(;i))7

Ho..v

where
J3(p1ap2ap37 (l)a (2))

1 EIRF €IR 1—= ng? n()
= dac dy ,
(4m)?  (4mpd )em Dl—emw
D = (p1x — pay)® — pay — pia —
p=p3— (p1+p2)°.

p2y - 107
(2.1)
The masses of internal particles are assumed to be massless.

The remaining task is to perform the parametric integration
of Jg .
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2.2 Two on-shell, one off-shell external legs

For the case of two on-shell and one off-shell external par-
ticles, we set p? = p3 = 0,p% # 0 without any loss of
generality. The integration can be done in a straightfor-
ward way:

1 emrl'(—€mr)
(4m)?  (dmpd )em

JS(Oa Oapgv nmany) =

1 1—x
></ d:c/ d
0 0
_ arl'(—€mr) —p3°
(41)2 4mp?

(—p3zy —10)1-em 22)

>Em 1 B(ng + €r,ny + €1R)
—p? Ny + Ny + 2e1R

where p3* = p3 + i0, and B(-,-) is a beta function. The
infrared structure of the tensor integral can be obtained by
expanding (2.2) with respect to e;g. The results of expan-
sions under the MS scheme are shown in Appendix B. When
both n, and n, are non-zero, there is no IR divergence as

I (e —1l(ny —1)!
g 2. Y
J3(0707p37nmny) - (475)2]3% (nx _|_ny)_
(EIR — 0)

2.3 One on-shell, two off-shell external legs

In the case of one on-shell and two off-shell external parti-
cles, we set p? = 0,p3 # 0,p3 # 0. The integral .J3 becomes

1 EIRF(_EIR)
(@m)? (dmug)em

J3(07p§7p§;nx7ny) =

1 11—z
X / dm/ dy
0 0

znzyny

X
—p3)ay — p3y(l —y)

((p3 —i0)l-em

- eirl’(—€Ir) (—Zf32 )EIR 1
(4m)? dmpy —p3

2 .2
oy (1,1—em,2+m;p3~f2>
D3

B(ng + €r,ny + €1R)
Ng + Ny + 261R

Ng + EIR
ng +1

p3 —p3
= J3(0,0,p3; ey 1y )G, < 3 2) : (2.3)
b3
where
n + IR
Qn(z) = +1 2F1 (1,1—€IR,2+H;2), (24)
and o F (-, -, -5 -) is the hypergeometric function. A definition

and some properties of the hypergeometric function and its
numerical evaluation can be found in Appendix A. When
p3 — 0, the hypergeometric function becomes

ng +1

F;(1,1 _—
2F1 (1, Ng + €IR

—€IR, 2+ ng; 2) — (z—=1).
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Then, the result (2.3) agrees with (2.2) when p3 — 0. The
infrared structure of the tensor integral can be obtained
by expanding (2.3) with respect to egr. The results of
expansions under the MS scheme are shown in Appendix B.

3 Box integral
3.1 Massless one-loop box integral in » dimensions

Box integrations can be treated the same as in the vertex
case. The tensor integral of a massless one-loop vertex with
rank M < 4 in space-time dimensions with n = 4 — 2eyvy
can be written as

A"k k,...k
T(4) _ 2\EUuv / 12 v
[T (MR) (2n)"i D1 D3D3Dy’

M

where
D; = k% +10,
Dy = (k +p1)? 410,
Ds = (k + p1 + p2)® + 0,
Dy = (k +p1 +p2 +p3)® +10.

After the same procedure as that used in vertex integration,
we are left with following parametric integration:

F(Q — EIR)
(4m)? (dmy) ™

1 1—x 17937y xnm Ny an
x/ do:/ dy/ dz%,
0 0 0 Dz—em

2 2 2 2, —
J4(Satap1>p2,p3,p4anzvnyanz) -

(3.1)
where
D= —szz—ty(l—a —y—2) — play — piyz
—p32(l -z —y—z) —ple(l -z —y —z) —i0,
s = (p1+p2)°,
t = (p1+pa)*

3.2 Four on-shell external legs

When all external particles are on-shell (massless), p? =
p3 = p3 = p7 = 0, the integral of (3.1) can be
F(? — EIR)

J4(Sat;03070703nw7ny7nz) = W

(3.2)

e yny P

1
X / dzdydz 5= -
0 (—zzs —y(l—xz—y—2)t —i0)" ™%

After applying the transformation

T =rv,
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y:w(lir)a
z=(1-r(1—-w),

the integral becomes

J4(87t; 070707 O;nma nyanz)

1
_ Ire2— 5IR)E / drr71+nz+am(1 _ T)71+ny+nz+6m
(4m)? (4mugy)™ Jo

1 1 Ny _ Nz gyNa
x/dv/dw wr (1 = w)"*v 5
0 0 (=sv(l —w) —t(1 —v)w —10)" ™"
N F(Q — 5IR)
= 7@2

(475/1%,{) e B(’flaC + EIR, Ny + Nz + €IR)

w™v (1 _ w)nz e

T
< @ o e

The r-integral just gives the beta function. Then, the v-
integral can be done:

1 'UnI
I, = / dv 37—
0 [(—s+ sw + tw)v — tw —10]" "™
(_agm wR—2 -
= szl (2 —€R, 1 + g, 2 + ng, —§w> s
where
~ m s
gw ? %7
s =s+410,
t =1t +10,

@ =u+1i0 = (p1 + p3)? + 0.

Here, we use s+t +u=>_,p? =0.

Further integration of the hypergeometric function is
not straightforward. When a (or b) in the hypergeometric
series oF(a,b,c; z) is a negative integer, the hypergeo-
metric series is truncated at some point and becomes a
polynomial. In order to express our target integrand as a
polynomial, a transformation formula,

2F1 (CL, b7 & Z)

_ F(C)F(c—a—b)z
I'(c—a)l'(c—b)

—a

1
X9l (a,a—c—i—l,a—i—b—c—l—l;l—)
z

I'(c)(a+b—c¢)

— c—a—bza—c
Tl A

1
X9 Fq <ca,1a,cab+1;1>
z

(larg 2| < m,Jarg(1 — 2)| < ),
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is used. After this transformation, the hypergeometric func-
tion becomes

o Fy (2 —€IR, L + 1y, 2+ 1y, _gw)

= (ne + D!I'(er — 1)

> (3.3)

~\ —1-ng
F(nrism) (_fw)

L (L gyt i(

&” =0

)l (-1

1+ — .
fw F(l + EIR)(nm — l)!
Though the hypergeometric function in the LHS of (3.3)
is finite when n, > 1 and ;g — 0, the gamma function
in the RHS has a 1/eg pole. We have confirmed that the
terms in brackets on the RHS of (3.3) start O(e1r) when

ng > 1. Thus, there is no 1/erg pole, as expected.
Then, the remaining w-integral in J; becomes

B AN
(4mt)? (475;%)

X B(nm + €1R, Ny +n, + 51R)nz!F(€1R)F(1 — EIR)

J4(87t; 0707 07 07 n$7ny7n2) =

1
x/ dww™ ~2TER (1 — )"
0
1 - —1—ng
N e (5)
F(nm + 5IR)

+

1) 2 :
(* ) Z( 1 (~1)!

l
g, 2\t §w> TU + em) (s — 1)

The w-integral can be solved in a term-by-term way for
each power of [. The final form of .J4 is obtained to be

1

(4m)2st
XB(?”LQC + ER, Ny + 12 + €IR)nx!F(5IR)F(1 — EIR)

—F \® —t " B(1+ns,ng +ny + €R)
dmpd, s I'(ng + €1r)

xoF1 (1 4+ ng,ng + ny + €1R,

J4(87t; Oa 0,070;nxa TLy,TLz) =

a
1+nm+ny+nz+EIR7_§)

5\ s\
“(mz) 5(F)
xB(1+ny,l +n, + €R)
XoFy (141,14 n, + R,

(-1
I'(l+emr)(ne —1)!

U
1+l+ny+nz+EIRa_t>]a
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where ¢t = ¢ — i0.
When the numerator of the integrand is unity, n, =
ny, = n, = 0, the result of (3.4) is reduced to

Ja(s,;0,0,0,0;0,0,0)

1 B(SIR, EIR)F(l — EIR>
(4m)?st €IR

_g €IR
X <47W2> oI (1751R>1+51R7_
R

—t €IR
+ (47W2 ) 2 F1 (LEIR, l+em,—
R

il 2

)
)|

‘We have checked that this result agrees with the precedence
result obtained by Duplanzi¢ and Nizi¢ [8] in both physical
and unphysical regions of kinematical variables, s and t.

When n, = 0, the result of (3.4) has a shorter expression
without a fake pole, as follows:

|

(3.5)

J4(57t; Oa 07 070;07ny7 nz)
1

(475)2StB(€IR, Ny + Ny + EIR)F(l — 5IR)

—t €IR
<4TE/J,2R) B(1+nzany +EIR)

U
x o Fy (Lny +€1r, 1 + ny +n. + R, —§>

_3 EIR
+ <41'C,U,12;{> B(1—|—ny,nz —|—8IR) (36)

U
><21?1 <17nz +5IR71+ny +nz+5IR7E)]'

The infrared behavior of the loop integral can be obtained
by expanding this formula with respect to €r, as shown
in Appendix B.

In some cases with n, # 0, we can avoid the fake pole by
using the symmetry of the integrand. The basic integrand,
(3.2), is symmetric under the exchange x(nz) < z(n.).
Then, the result with n, # 0 and n, = 0 can be easily
obtained as

J4(S7t; 0707070;nl7 'fly,o)
= {J4(S7ta Oa 070707 Oa nyanz)a Ny — nw}

for any values of n,.

In the case of n, # 0,n, # 0, the integration has no IR
divergence with any value of n, > 0. However we cannot
simply set e1g to be zero, because there is the fake pole.
After expanding (3.4) with respect to eig, we confirmed
that the e1g pole was canceled out. An explicit form of the
Taylor expansion of the hypergeometric functions can be
found in Appendix A.
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3.3 One off-shell and three on-shell external legs

When one of four external particles is off-shell, we can set
it to be p; without any loss of generality, p? # 0, p3 = p3 =
p7 = 0. Then, the integral of (3.1) can be written

Ju(s, t;p2,0,0,0; Mg, Ny, M)
2_EIR l1—x l—z— y
T (4m)2 (dmd) EIR/ dx/ dy
R
xnjynyznz
X

2751R :

(—zzs —y(l —x —y — 2)t — poy —i0)
(3.7)

After applying the same transformation as for the four-on-
shell case, the integral becomes

J4(S7t;p%a 07070;nwa nyanz)

_ F(2 — 5IR)
(4m)2 (4™

1 1
></ dv/ dw
0 0
w™ (1 —w)"=y"e

w) — (1 — v)w — piow —

B(n;c + EIR, Ny + Nz + 6IR)

% (—sv(1 — i0)2—em

The v-integral can be done:

1 e
IU :/ d'U 2 .A12—EIR
0 [(—s 4+ sw + tw — pfw) v — tw — i0]
(=)™ w2 ~
= WQFl (2 —€1Ry L + 1y, 2+ ny, *fw) )
where
~ u s
= = + = .
bu i tw

Here, we use s+t+u = p?. This result is the same as that in
the four-on-shell case, except that u = —s —t + p? instead
of u = —s — t. After making the same transformation as
that for the four-on-shell case, the remaining w-integral
can be expressed as

1
(4m)2st
XB(TLI + EIR, Ny + N2 + EIR)nm!F(EIR)F(l — 5IR)

) ) ™
4mp? s I(ng +er)

() S e
A — I'(l+ er)(no

where

1 ~ —1—n,
7w = / dwwm=Tre T ITEmR (1 )= (1 + %w) ,
0 S

J4(Sa t7p§707 Oa 07 n$7ny7nz) =

(3.8)
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t
X (1 + %w) ( + uw) .
5
The first integration, Z(!), can be done:
W = B(14ns,ng +ny +€R)
x oI (1+nm,nx + ny + €1R, (3.9)

]
1+nm+ny+nz+€m,—§>.

For the second integration, Il(2)

binomial expansion:

n.
w)nz wny — Z n. Ckl (_
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t+u S
s ny+ki
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where ,,C,, is the combinatorial defined as

m!

mCTL

s (3.10)

Then the second integration, Il(2), can be done:

7

ny+kq

ny+k1
-3 e (75)
k1=0 p 5
—t

X Z "y+klck2(_1)ny+k2 («9)
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k1=0 ko=0

L (Y
l+ky+em t
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~ o\ l+kater
. <P1 )

S
><2F1 (1 + l,l+ k'g +€IR,

~ ~ 2
1+l+@+fm¢fﬁ§)y (3.11)
where p12 = p? +10. Here, the integral J4(s,t;p?,0,0,0;
N, Ny, Nz) can be successfully expressed by a finite number
of hypergeometric functions. The infrared structure of the
tensor integral can be obtained by expanding (3.8) with
respect to err. The results of expansions under the MS
scheme are given in Appendix B.

When the numerator of the integrand is unity, n, =
ny = n, = 0, the second integration (3.11) is reduced to

—t 1 ~ —1 1’5 ~ elr—1
/<m<1+?w) (1+ f”w)
S 0 S S

1

U
oI (LEIR, 1+ e, —)
€IR t

p~2 EIR ﬂp~2

1 1

< — > 2 (1,5IR,1+81R7~>]-
S ts

Then, (3.8) can be written as

¥ =

(3.12)

J4(S7t;p%a Oa 070;07 Oa O)

1 B(&‘IR,&‘IR)F(l — €IR)
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€IR
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1 Blemew)(1—ewr) (—A*\™"
Ay,

(41‘5)2St €IR

_ 9
i
X9l <1a51Ra1+51R>_ ?gl )]

We have again checked that this result agrees with the
precedence result obtained by Duplanzi¢ and Nizi¢ [8] in
both the physical and unphysical regions of the kinemati-
cal variables.

When n, = 0, the result of (3.8) does not have a fake
pole. The result is obtained to be

(3.13)

J4(57t;p%7 Oa Oa 07 O7nyanz)

1
= (ZIT)QStB(EIR,ny + n, + €IR)F(1 — EIR)
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7{ €IR (1) 7§ €IR (2)
7T 7 3.14
. (4nu%> 4(4nu%) o | (@14
where
W = B(1 +n.,ny + €1Rr)
U
X9 F] (1,ny+51R,1+ny+nz+51R,§> . (3.15)
n, ny+ki
2
I(() ) = Z Z nz Ck1n1;+k1Ck2
k1:0 }{3220
ny+k
_1\k1+k2 S ' 1
x(—1) 5
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U
X |2Fy <17/€2+€1R71+k2+5m,—t> (3.16)

p~12 €IR ﬁp~12
- <~) 2 Iy <1J€2 +em, 1+ ko + e, —— ) :
] ts

In the case of n, # 0,n, # 0, the integration has no
IR divergence when using any value of n, > 0. However,
we cannot simply set eig to be zero again, because there
is the fake pole. After expanding (3.8) with respect to g,
we confirmed numerically that the ;g pole was canceled
out. The results of expansions under the MS scheme are
shown in Appendix B.

4 Numerical check of the results

The results of the vertex tensor integral are rather trivial.
However, those of the box tensor integral are very compli-
cated and highly non-trivial. We need some cross-checking
of our results compared with other independent calcula-
tions. For the scalar integral of the one- or two-off-shell
box integral, we can check our results numerically with
those of the precedence calculation done by Duplanzi¢ and
Nizi¢ [8]. In both in the physical and unphysical regions of
the kinematical variables, s and ¢, it was confirmed that
the results given in this report agree completely with those
in [8].

The basic ingredients of a numerical calculation of the
general case of the tensor integral are given in Appendix A.
Those formulas are (A.3)—(A5) to evaluate the hypergeo-
metric function and (A.10)-(A.21) to evaluate the gener-
alized hypergeometric functions.

At first, the results of a numerical evaluation of the
hypergeometric function of the type (A.4) are compared
with those obtained from Mathematica [13] at several val-
ues of I,m,n and z at random. We confirmed that both
results agree very well with each other to more than ten
digits. For the generalized hypergeometric function, our re-
cursion relation formulas, (A.10)—(A.21), were checked by
comparing those of numerical integration of (A.9) using the
numerical contour integral (NCI) method [14] developed

by the author. The function Fl(:;) (2), where n = 1,2 and
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Table 1. Numerical comparison of F‘Z,(l?} () between analytic formulas given in
(A.11)—(A.15) and the numerical contour integral of (A.10)

z real/imag. analytic NCI

2000 4+ 107151 real 3.167042847 x 1077 3.167042848 x 10"
imag. —1.308996938 x 1077 —1.308996939 x 107

—2000 + 107 %% real 3.167042847 x 1077 3.167042848 x 10~
imag. 010724 0(10718)

0.2+ 1075 real 3.723185361 x 10+ 3.723185362 x 107!
imag. O(1071%) O(10712)

—0.2+107%1  real 1.809694496 x 107! 1.809694496 x 10+
imag. 0(1071%) 0(1071?)

Table 2. Numerical comparison of 13‘2(233 () between analytic formulas given in
(A.17)—(A.21) and the numerical contour integral of (A.16)

z real/imag. analytic NCI

2000 + 107154 real 1.024874615 x 10~° 1.024874616 x 10~°
imag. —9.949558053 x 1077 —9.949558053 x 107

—2000+ 107151 real 1.230491374 x 10~¢ 1.230491374 x 10~°
imag. 010724 01071

0.2+ 1075 real 1.624874690 x 10™* 1.624874690 x 107+
imag. O(1071%) O(1071%)

—0.2+107%1  real 1.005561296 x 10~* 1.005561296 x 10™*
imag. O(1071%) 0(1071?)
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I =2,m = 3, given in (A.9), was numerically evaluated
at several values of z, as shown in Tables 1 and 2, which
was compared with the NCI results. Both results gave very
good agreement to about ten digits, as shown in tables.
The imaginary part of the result must be zero, except the
z = 2000 + 0i case in the table. It was also numerically
confirmed very precisely.

The numerical results of the box tensor integral with
zero and one off-shell external legs obtained using (B.53)
and (B.79) are also compared with those using the NCI
method, integrating (3.1) and (3.7) directly. Both results
show very good agreement within about five digits, as shown
in Tables 3 and 4.

5 Conclusions

The general formulas of the 3- and 4-point tensor inte-
gral were obtained directly without any reduction method
to the scalar integrals. The IR behavior of the tensor in-
tegrals was clearly shown by expanding the results with
respect to the extra space-time dimensions due to the di-
mensional regularization. All results were expressed by very
short formulas in a suitable manner for a numerical calcula-
tion. The results of the scalar integral were compared with
the precedence results, and showed complete agreement in
both physical and unphysical regions of the kinematical
variables. For the IR finite case, the analytic results were
compared with the numerical contour integration and gave
a consistent result within the numerical integration error.

Table 3. Numerical comparison of Ja(s,t;0,0,0,0;ng, 1y, nz)
between analytic formulas given in (B.53) and the numeri-
cal contour integral. Here, we set kinematical variables in the
physical region at s = 123, t = —200 and ur =1

analytic NCI
—2.15298 x 107% —2.15297 x 10~°
—2.78647 x 107° —2.78650 x 10~°

ny my n. real/imag.

1 2 3 real

imag.
2 0 2 real 9.74570 x 1072 9.74572 x 107°
imag. —3.22229 x 107% —3.22230 x 108

Table 4. Numerical comparison of J4(s,t; p3,0,0,0; ng, ny, N2 )
between analytic formulas given in (B.79) and the numerical
contour integral. Here, we set the kinematical variables in the
physical region s = 123, t = —200 p? = 80 and ur =1

ny ny n. real/imag. analytic NCI
1 2 3 real —7.88683 x 1071% —7.88689 x 10~ 1°
—1.95176 x 107 —1.95176 x 10~°

imag.
2 0 2 real 1.48133 x 1078 1.48133 x 1078
imag. —2.04318 x 1078  —2.04318 x 1078
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Appendix A: Numerical calculation
of the hypergeometric function

In this appendix, the basic properties of the hypergeometric
function [15] and their numerical evaluation are summa-
rized. The 1/e1r expansion of the hypergeometric functions
appearing in the tensor integrals and their numerical eval-
uation are also shown.

A.1 Hypergeometric function

The Gauss-series representation of the hypergeometric
function is

2Fi(a, b, ¢;2) = 2 F1(b, a, ¢; 2)
k=0
where (-)x is Pochhammer’s symbol defined as

F(a—i—k).

(a)r = @)

The Euler integral representation is

o F1(a,b,¢; 2) (A.2)
I'(c) /1 b—1 —b—1 -
= 1—171)° 1-— “d
TOITe—1) J, T (1 —1) ( 27) " dr
(Re > Rb > 0).
When a is a negative integer, such as a = —m, the Gauss

series is truncated at £ = m and becomes a polynomial,

(=m)i(b)x 2F

2F1(_m7b7 672) = (C f y

M= 114z

(0)k Lk
Emck( )"

where ,,,C}, is the combinatorial defined in (3.10). For nu-
merical evaluations of tensor integrals, the following type
of the hypergeometric function might be numerically cal-
culated as

(A.3)

b
Il
=]

oFi(l,m+1,n+m+2;2)

1 1
_ ml— A\ (] — —ld
B(m—|—1,n—|—1)/0 71 —=7)"(1—2z7)7"dr
n m+tk
_ Z Zl it nCrym+k Ok, 1
m—+k
s B(m+1,n+1) z 1
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1
x/ (1 — zr) 7! Fh2dr, (A.4)
0

where [, m,n are positive integers. Here, integration can
be performed as

1
/0 (1 — z7)~th2dr (A.5)
,M, ko —14+1=0,

z
- 1 I
kg—l—|—1( )—z y ko —14+1#£0.

This formulas can be used for a numerical evaluation of
hypergeometric functions of this type.

A.2 Generalized hypergeometric function
For a Laurent expansion of the hypergeometric function

with respect to e1r, the following generalized hypergeo-
metric function is necessary:

3Fy({a1, a2, a3}, {b1,b2}; 2)

=3 o
_ (b))
I(by — a1)I'(az) (b2 — az)
/ ar / dv (A7)
Xy b2 (] — p)hr-ar—lraa-1
x (v — 7)== L(] — pr)=as,
and
4F3({a1,a2,a3,a4}, {b1, b2, bs}; 2)
- Z “1 n( 3()1735 @4)n %T (A.8)

Those generalized hypergeometric functions appear in the
following integral:

(G L (1)
() = drr 7 (1 = zr)”V2 " In" 7,
0
(A.9)
where j; is a positive integer and jo is an integer (it can

be negative).
When n = 1, the integral becomes

(1
Fj(l ,)j2 (Z)

1
= 7/ drrt =11 — z7) =G D 7 (A.10)
0
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_ 3F>({j1, 71,72 + 1}, {1 + 1, j1 + 1}; 2)
Ji

k

> z
- kzzo (j1+ k)22 +k+1)B(ja+1,k+1)°

When js is a negative integer, such as jo = —j < —1, this
function can be expressed by a polynomial,
A1) N j1Ck(=2)* A
Fy7 i(z) = —_ (A.11)

y 2
— (j1+k)

When J; =1 and j; = 0,1, the integral can be performed
easily as

A = 22, (A12)
e = -2 (A1)

When j; = 1 and j > 1, we can use the following recur-
sion relation:

(1—2)772 -1

J2 =)
zZ) = F. —_—
) Jo(ja + 1)z

(1)
Fl,j2+1 jo+1 1,52

(A.14)

For the general case, the function F;117)j.2 (z) can be obtained

using F(l)

]11

FO

J1>]2

]1 1CkF11j) 7k( ) (A-15)

_ZJI 1

When n = 2, the integral becomes

FDL(2)

J1,J2

(A.16)

1 [t , .
5/ dTT“fl(l—zr)f(”H) In?r
0

4F3({j17j17j17j2 + 1}? {jl + 17j1 + 17j1 + 1}7’2)
-3
J1

k

> z
- ,;) (1 + k)32 +k+1)B(j2 + 1,k +1)°

When jo = —j < —1, it is also represented by a polynomial,
j—1 k
@ Z Jo1YENT<) 1Ck(— (A.17)
]h*ﬂ :
o (j1+ k)3

When J; =1 and j; = 0, 1, the integral can be performed
easily as follows:

(A.18)

(A.19)
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When j; = 1 and jo > 1, we can use the following recur-
sion relation:

(o + DEC) 11 (2) = G2 B ) (2) — BN

1.5, (2) = 0. (A.20)

For the general case, the function Fj(ig (z) can be obtained
using F%)
g 1, (Z)7

]11

- L
FJ'(L)JQ JlflckFl(j)Qik(Z). (A.21)

_Zh 1

A.3 1/e1r expansion of a hypergeometric function

In the general form of the tensor integrals, the following
type of integral appears:

1
Lo = / Tl+”_1+5m(1 —7)™(1 - zT)_(H'l)dT,
0
=Bl +m,l+n+emr) (A.22)
xoFy (1+ 1 l+n+er,1l+l+n+m+em,2).

In order to show the IR structure of the function, a series
expansion of the function Z, ,, , with respect to etg might
be considered,

(4)
Ilm"* Z ‘Ejmn

j=-—1

6IR, (A.23)

where [, m,n are non-negative integers. When [ = m =
n = 0, the Laurent expansion of the function can be

= B(la €IR)2F1 (13 €IR, 1+ €IR,, Z) )

= /1 dT[M(l — zT)_1 + —<1 b it
0 EIR T

1 _
+51R¥ ((1 ) o 1) +0 (&) | (A24)
1 _ )
= — —In(1 - z) — Li(2)emr + O (efg) -
€IR
Then the first three terms of (A.23) are
FSohz) =1, (A.25)
F§0(2) = =In(1 - 2), (A.26)
F§4o(2) = ~Li(2). (A.27)
When | = m = 0,n # 0, the integral becomes
1
Toon = / 7”71+EIR(1 — ZT)ildT. (A.28)
0
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Then, the first three terms of (A.23) are

Fi(1,n,1+n;
Foom(z) =2 i nn tniz), (A.29)
Fo0a(2) = —F4(2), (A.30)
Foon(z) = B0 (2) (A.31)

When [ = 0,m # 0,n = 0, the integral becomes

1
Zomo = / 771+€IR(1 —7)™(1 - Z’T)ild’r
0

1
mC’k(—l)k/ rh=ltem (] — 27)~tdr
0

=Y mCr(=1) T 0. (A.32)
k=0
Then, the first three terms of (A.23) are
Fomo(2) = Fooo(2), (A.33)
Foomolz Z Cr(—1)FF o(2),  (A34)
0(11)710 Z Ck 0,0,k( ) (A-35)

When [ = 0,m # 0,n # 0, the integral becomes

1
Zommn = / rrTirER (] 7)1 — 27) 7T
0
1
mC’k(—l)k/ T"H“IJFEIR(l —ZT)ildT
0

(A.36)

fé?,,)%n(z) = B(1+m,n)2F1(1,n,1+n+m;z),
(A.37)
i) = YO D, o0, (A38)
k=0
Fomnlz Z Cr(=1)* F 2 ol2). (4.39)
When [ # 0,m = 0,n = 0, the integral becomes
Zioo = /01 rimltem (] — 7)) ~UHDdr (A.40)
Then, the first three terms of (A.23) are
FOye = L= (A1)
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2F1(l,l,l + 1;2)

Floo(z) = - - 7 (A.42)
Fioo@) = B (2). (A.43)
When [ # 0,m = 0,n # 0, the integral becomes
1
Lion = / pin=ltem (] — »r)~(HDdr. (A.44)
0
Then, the first three terms of (A.23) are
(0) oFi(1+114+n,14+14n;2)
Fron(z) = Th , (A.45)
Flom(2) = ~Fipn(2), (A.46)
Flom(2) = FD, (2. (A47)
When [ # 0, m # 0,n = 0, the integral becomes
1
im0 = / ririFem (] — ) (1 — 2r) " Az (A48)
0

Then, the first three terms of (A.23) are

fl(,(r)r)L,o(Z) =B(l,14+m)s A1+ 1L 1+1+m;z2),
(A.49)
Fimol =2 nC ~DMUEL (), (A.50)
lmO Z Cr(— l+k:l( z). (A.51)

When [ # 0,m # 0,n # 0, the integral becomes

1
Il,m,n = / Tl+n71+€m(1 - T)m(l - zT)i(lJrl)dT- (A52)
0

Then, the first three terms of (A.23) are

Fo = B(l+n,1+m) (A.53)
xXoF (1+ 114+ n,14+1+m+n;2),

l m,n Z C k+1F‘l(in+k l( ) (A54)

Fionn = Z Cr(~1)* B a(2). (A.55)

Appendix B: 1/er expansion of tensor
integrations with the MS scheme

We give 1/e1r expansions of tensor integrals under the MS
scheme in this appendix. The MS scheme is realized with the
following replacement of the renormalization energy scale:

TE
2 2 €
KR MR4

where vy is Euler’s constant.
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B.1 Vertex with one off-shell external line

The general result of the vertex tensor integral is shown
n (2.2). The IR structure of this function can be obtained
by a Laurent expansion of the beta function for the IR
singular case.

B.l.ln;=n,=0
When n, = ny = 0, the tensor integral becomes

J3(0707p§;07 0)

_ I'(—em) —]532 EIR i B(er, €1R) (B.1)
(4m)? 4mpd —p3 2 ’ '
After the err expansion with the MS scheme,
J3(0,0,p3;0,0) (B.2)
1 ci? et o
— C 0]
(4m)2p3 [ 2 T em T (Ew)] -
where
e =1, (B.3)
2
- —D
¢V = (j) , (B.4)
HR
2
©_ _® Ly2(=r
Csy = 12—1-21n ( 2R) (B.5)
B.12n,+n, #0
The general result of the vertex tensor integral, (2.2), is

symmetric under n, and n, exchanges. When one of n, or
n, is non-zero, the tensor integral becomes

J3(0,0,p3;n,0) = J3(0,0,p3;0,n) (B.6)

_ eml(—emr) (=2 \™ 1 B(n+em,em)
(41)2 4mpd -p:  n+2m

After an e1g expansion with the MS scheme,

J3(0,0,p3;n,0) = J5(0,0,p3;0,n) (B.7)

- —— +C3 + O
(4m)2p3 l EIR 32 (em)

)

where

1 1
Cf§2 ) = n’

o_ 2 1 —P3
(/’32 = *ﬁ + E (ln( /LR > Hn_1> 5 (Bg)

where H,, is the harmonic number, defined as

1
Hm = Z;ﬂzl 37

(B.8)
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B.13 n, #0,n, #0

In this case, because there is no IR divergence in (2.2), g
can be set to zero,

J3(0707p§§nmany)
1 (ng — 1)I(ny — 1)!
(Am)2p3 (g +ny)!

(B.10)

B.2 Vertex with two off-shell external lines
B21n;=n,=0

The function Gy(z), defined by (2.4), can be expanded with
respect to ejg around zero as

Go(2) = GV (2)em + G5 () + O (dr) . (B.11)
where
G0y = 202, (B.12)
) _ ln2(1 — Z)
G (2) = —5— (B.13)

Then, the vertex integral J3(0, p3, p3; 0, 0) can be expressed
after an e;g expansion with the MS scheme as

J5(0, p3, p3;0,0)
(=1)

1 C
g | B o8 voten | a0
3
where
2 .2
¢ e (B, )
P3
2
—Pp
CSS - g(l) < 2 2)
D3
(—2) ~(2) P%‘Pg
+C31 7 G, 2 ) (B.16)
3

B22n, =0,n, #0

Because the vertex integral Js(0, p3, p3;0,n) is IR finite,
we can set erg to be zero:

C(O)

34> (B'17)

J3(07p%7p§707n) (47'(:)

where

P2 —p2
9 = ¢l Vg (15321’2) . (B.18)
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B.23n, #0,n, =0

For non-zero values of n, G,(z) can be expanded with
respect to ejg around zero as

Gu(2) =GV (2) + GV (2)em + O (ef) . (B.19)
where
G0 (2) = ——aFi(1,1,2 4+ 3 2), (B.20)
Gi)(2)
1 . z—1\" In?(1 - 2)
_n+12F1(1,1,2+n,z)—n( ~ ) 5
Y Gz =1
k=1
— k(1 = — —
" (1—-2)"(1—-EkIn(1l-2)) 1. (B.21)

k2z

Then, the vertex integral J3(0, p3, p3; n, 0) can be expressed
after an ejg expansion with the MS scheme as

J3(07p§7p§;n O)

1 ¢V ©
Cy O B.22
- (41'C)2p§ EIR + + (EIR) ) ( )
where
2 .2
¢l = Vg (pp) (B.23)
b3
2 2
0 —1) (1) (P53 — P
C?(,5) :Céz )g(() ) ( 3~2 2)
b3
0o »3
e ( — 2). (B.24)
b3

B2.4n, #0,n, #0

In this case, there is no IR divergence and g can be set
to zero,

J3(07pg7p§5n1’ny)
1 (ny—1)Nn, —1)!

T An2p2 (g +ny)!
2
p3 p2 Ny
Fi(1,1,24 ng: . (B.25
T2 ( o ﬁ32 > Ny + 1 ( )

B.3 Box integral with all on-shell external legs

The general result of the box tensor integral with all on-
shell external legs is shown in (3.4). The IR structure of
this function can be obtained by a Laurent expansion of
the beta function for the IR singular case.
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B31ln;=n,=n,=0

When the numerator of the integrand is unity, n, = ny, =
n, = 0, the box tensor integral result, (3.4), is reduced to

J4(Sat7070a Oa 07 07070)

_ 1 Blem,emr)I'(1 —cmr)
(4m)2st

€IR

~ £IR ~
-3
Fi(1 1 = B.26
X[(‘ln/l%) 2 1( ,€IR, 1 + €IR, — t) ( )

7{ €IR ﬂ
+(4 2) 2Fl (1761R71+€IR7~)‘|'
TC/LR S

After using a Laurent expansion of the hypergeometric
function of (A.24) the loop integral with the MS scheme is

Ja(s,1,0,0,0,0;0,0,0) (B.27)
L [e? e Lo
e\ 4o
- (4m)2s t [ 2 + p— +Cyy’ +O(er) |
e =14, (B.28)
_ -5 —t
el =2 {m (/;) +1n (;ﬂﬂ (B.29)
R R

0
cty

(B.30)

B.32n,=0,n,=0,n, #0
When n, = ny, = 0,n, # 0, the result is reduced to

J4(S7 tv 07 07 07 07 Oa Oa nz)

_ B(emr,n: +em)I (1 — emr)
(4m)?st

_5 \°®
X |:<41'['u12_{) B(l,nz+€IR)

m
X o Fy <1,nz +ér, 1 + n. + 1R, t_>

_i' IR
) Blem.1+n.
- (471#%,) (€, 1+ 12)

x o F) (1,51R,1—|—nz +51R,—7;‘>} . (B.31)
S
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Laurent expansions of beta and gamma function with the
MS scheme are obtained as follows:

2\ fIR
B(n1 + €R, N2 + EIR)F(I — 5IR) <411:,uQ> (B.32)
R
(=1) ( )
— % + AgLO])ng( 2) + Agzlgng (q2)5IRa
€IR ’
where

AC (@) =1, (B.33)
2

AP (@) zln( 1 ) — Ho1, (B.34)
MR

99 (n)| (B.35)

and
AGD(@%) =0, (B.36)
AP (¢%) = B(n1,na), (B.37)
'Aglll)mz (q2) = B(nla ’I’Lg) (B38)

_ 2
X <HTL1—1 + HTLQ - 2Hn1+n2—1 + ln (g)) )
HR

where n,n1,ny are positive integers. Here, 1/(V)(2) is the
first derivative of the digamma function, given by

n—1

2
Wy ™ v L
OSSO -

iy

Finally, the tensor integral can be obtained to be

Ju(s,:0,0,0,0;0,0,n.) (B.39)
1 [e? e o
C 10
” (4m)2st l e * EIR +Ci +0kr)|
where
i
¢ = AL 0 (1), mao
_ a
C£21 A OOnz ( t_>
A0 (-2)
0 S
OFD, ( ;f) (B.41)
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1), ]
e = ALY, (—t)

B33n,=0,ny, #0,n, =0
When n, = 0 and both n, and n, are non-zero, J4 becomes

J4(S,t; 0707 Oa 07 Oanyvnz)
1

= MB(EIR,TL?J +n, + EIR)F(l — EIR)

_§ EIR
<4TCM2R> B(l +ny,n, + 511{)

U
XoFy (l,nz + &R, 1 +ny +n, + &R, _t>

_Lf €IR

R

m
xoF <l,ny +em, 1 +ny +n; +em, —§> .

One can see that Ju(s,¢;0,0,0,0;0,n,,n,) is symmetric
under a simultaneous exchange of ¢ <+ s,n, <+ n.. Then,
for the case of ng, = n, = 0,n, # 0, therequired integration
can be obtained as

Ja(s,t;0,0,0;0,n,,0)
= {Ja(s,£;0,0,0;0,0,n,),n; = ny, s <> t}.

(B.44)

B.34mn,=0,ny #0,n, #0

Let us start from (B.43). There is no IR singular pole in
the square bracket and the % pole in the Beta function
in front of the square brackets. One thus needs to expand
the terms in the square bracket up to O (e1r).

Then, finally we obtain

J4(57t; Oa Oa 070;07ny7 nz)

_ 1
= (dm)2st

_§ €IR (0)
g (4nu§> <f°’”y’"2( t)“mf‘) s <_

(B.45)

B(ewr,ny +n. +emr)I(1 —cr)

| 22

)
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~t " (o i 1) i L K TR
F ——= a ——= . — C O B.50
+ (47'5#%{) ( 0,nz,ny ( §) + IR 0,12 ,My ( §>> (4TC)2St IR +Ci + (5IR) ) ( )
After an erg expansion with the MS scheme, it is ob-  where
tained as -
—1
Caq

Ja(s,t;0,0,0,0;0,n,,n)

3 t\"™ () w
1 ) =n, <_) AO (HFO, (_~>
(4m)2st l ng +C +O0(m)|,  (B.46) s v 0y \ 73
- -1 U
where +A£L0:p)7ny(s)’¢.(g,ny),0 <t>

_ u 0) u s T
e =FY <__> + 7 <—> : (B.47) 5\ ©) (50 Y
ny,n i Nz, Ny 3 Jr;l (;) nmClAnx,ny(s)}—l,ny,O 7 ) (B.51)

0 1 ] U
Cégg) = -7:(5713@;712 (_t + 0,nz,my _§> ) t N
Cii) =ng | —-
+F ooy . (1:) In (:2 - Hny+nz_1) o -
: ) ~
_ " X |:'A$zw),ny (t)]:nm,o,ny <_§)
+ 7, (-2)
Mz 3

B.35n, #0,ny =0,n, =0 _ A0

Nz, My

t
i (= ) = Hoena). ~
( i) AL, (DF (_u>
x My N ,U,Ny §

D
The basic integrand, (3.2), is symmetric under the exchange
x(ng) <> z(n,). Then, the result can be easily obtained as (=1 U (0 U
(ns) & 2(n:) v A, @7 (7)) + A%, O 0 (-F)
J4(87 t7 07 07 07 07 Ng, 07 O)
_ . . e S\ ! B U
= {Ju(5,1;0,0,0,0;0,0,n,),n, — n,}. (B.48) 3 (;) e [«4%12,%(8)71(33%0 <_{>

=1

(HF

nzaowny

Ba6 . 70 £ 0,n. =0 #t,0 (0 (5) - A0 (7))
When n, = 0, the result of the integration, (3.4), can \ o ¢ o ¢

be written

Jua(s,t;0,0,0,0;ng,1ny,0) B.3.7 n, # 0, ny, = any value, n, # 0
1
= e tB(nx + e, ny + em)ng ! lNem) (1 — ) In the case of n, # 0,n, # 0, the integration has no IR
(4m)?s divergence with any value of n, > 0. The result is given by
—t \" =t \" B(1 +n,
S) (2 BU et o) Ja(5,150,0,0,0;m5,m,,1m.)
41'C,U,R S F(nm + 5IR)
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_ x (f,(f)n n (—f‘) -FO, <—€f) Hn,l)
After an gig expansion with the MS scheme, it is ob- e s o S ’
tained as

(0) ) u
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s l i where
+31 (%) alal, L HFY (;_‘) (B.53)
= ci? =ci? -2, (B.57)
~ ~ - ~ ~ 2
© ) u ©) u -1 -1 —pt p
+ A3, iy 4n. (5) <fl’ny’nz <_t_> —Finy e (—£> Hz-1)] . Cie ) C£1 ) _9 {ln (M2R1> —1In (1 + = )] ,
(B.58)
B.4 Box integral with one off-shell o n? ) up? 5 —;3%
and three on-shell external legs Cig = Ciy’ + o T2z | -5 ) - In 12
The general result of the box tensor integral with one off- —Dpi Lﬁ%
shell and three on-shell external legs is shown in (3.8) with +2k < 7y ) n (1 + ts ' (B.59)
(3.9) and (3.11). The IR structure of this function can be
obtained by the Laurent expansion of the beta function for
the IR singular case. B42n,=0,ny+n,>1
When n, = 0, and n,, n, have any value with n, +n, > 1,
B4ln,=n,=n,=0 the final result can be written as
When the numerator of the integrand is unity, n, = n, = J4(S,t,p?7 0,0,0;0,ny,n)
n. = 0, the second integral Z(?) is reduced to 1
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The integrals Z(") and Z(®) can be done easily:

™ i
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where p? = p? +i0. Then, the final result can be written as X o (1, Ny +em, 1 +ny +n, +em, — %) , (B.61)
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~ After an g1 expansion with the MS scheme, it is obtained as
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After an e1g expansion with the MS scheme, it is obtained as where
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X S (S S W (B.67)
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Cig) After an 1y expansion with the MS scheme, it is obtained as
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When n, # 0, and n, = n, = 0, the final result can be
written as s 1
D EINEI I
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=2 ~ -9
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At last we treat the most general case with n, # 0, and
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In this case, the result might be IR finite. Then, after an
_ - emr expansion with the MS scheme, it becomes
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