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Abstract. A set of one-loop vertex and box tensor integrals with massless internal particles has been
obtained directly without any reduction method to scalar integrals. The results with one or two massive
external lines for the vertex integral and zero or one massive external lines for the box integral are shown
in this report. Dimensional regularization is employed to treat any soft and collinear (IR) divergence. A
series expansion of tensor integrals with respect to an extra space-time dimension for the dimensional
regularization is also given. The results are expressed by very short formulas in a manner suitable for a
numerical calculation.

1 Introduction

The LHC (Large Hadron Collider) project [1] at CERN is
planned as the next-generation energy-frontier experiment.
One of the physics motivations of LHC experiments is to
discover the Higgs particle, which is the only one missing
ingredient in the standard model. In order to establish the
model completely, it is essential to find it and to inves-
tigate it in detail. It should also be important to search
for new phenomena beyond the standard model through
any tiny deviation in experimental observations from the-
oretical predictions. Further, not only searching for new
phenomena, but also performing precise measurements of
parameters included in the standard model is another im-
portant issue of LHC.

LHC has employed colliding proton–proton beams
in order to achieve beam energies as high as possible,
which should enhance the possibility to find new parti-
cles/phenomena. However, a proton machine must have a
large QCD background, since the proton is a composite
particle constructed by strongly interacting particles, such
as quarks and gluons. This veils signals with large back-
grounds. In order to extract as much physics information
as possible from experimental data contaminated by huge
backgrounds, the behavior of the background should be un-
derstood in detail. This implies that one should precisely
understand QCD, because it entirely governs the back-
ground.

The background of any proton–proton colliding exper-
iment must be completely predicted by QCD, in principle.
However, in fact, it is a very difficult task to make precise
predictions because of the large coupling constant of QCD.
Moreover the lowest level (tree-level) calculation does not
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have any predictive power for the event rate, because there
is no good renormalization point well-defined experimen-
tally. We need higher order perturbation calculations for
precise predictions of the background behavior.

Loop integration is one of the critical issues for com-
puting these higher order corrections. In general, N -point
tensor and scalar integrals with massless internal lines in-
cluding an infrared (IR) divergence must be calculated
in QCD. Since an arbitrary number of dimensions must
be used in QCD to regulate any IR divergence, the usual
method for the standard model [2] cannot be used directly.
Various methods to reduce (N ≥ 5)-point integrals into
(N − 1)-point integrals [4] with a dimensionally regulated
scheme are proposed. Then, all of the necessary (N ≥ 5)-
point integrals can be expressed by a linear combination of
box (4-point) tensor integrals. Usually, box tensor integrals
are further reduced to 4- or less point scalar integrals, and
then numerically evaluated to obtain higher order correc-
tions. The IR finite box integrals are obtained in [5]; for the
IR divergent case, box integrals with zero or one external
mass are given in [6]. All IR divergent box integrals are
treated in [7] using the partial differential equation method.
Another approach to all possible box scalar integrals with
massless internal lines with zero to four external massive
lines is proposed for the IR divergent case [8] and the IR
finite case [9]. Recently, two independent formalisms were
proposed for calculating one-loop virtual corrections with
an arbitrary number of external legs [10,11].

We propose a new method to calculate tensor integrals
directly, and not to use a reduction method from tensor in-
tegrals to scalar ones in this report. A set of one-loop vertex
and box tensor integrals with massless internal particles is
given in terms of hypergeometric functions. Dimensional
regularization is employed to treat any IR divergence. A
series expansion of tensor integrals with respect to an extra
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space-time dimension in the dimensional regularization is
also given in this report. All results are expressed by very
short formulas with a suitable manner for numerical cal-
culations.

A general form of 3-point tensor integrals is given in
Sect. 2, and that of 4-point ones in Sect. 3. The obtained
results are numerically checked in Sect. 4. A numerical cal-
culation method for the hypergeometric function and their
series expansion with respect to an extra space-time di-
mension is given in Appendix A. The series expansion of
the general form of tensor integrals can be represented in
terms given in Appendix A. Those results are given in Ap-
pendix B.

2 Vertex integral

2.1 Massless one-loop vertex integral in n dimensions

The tensor integral of a massless one-loop vertex with rank
M ≤ 3 in a space-time dimension of n = 4 − 2εUV can be
written as

T
(3)
µ . . . ν︸ ︷︷ ︸

M

=
(
µ2

R
)εUV

∫
dnk

(2π)n

kµ . . . kν

D1D2D3
,

where

D1 = k2 + i0,

D2 = (k + p2)2 + i0,

D3 = (k + p2 + p3)2 + i0,

and pi is the four momentum of an ith external particle
(incoming), kµ the loop momentum, and µR the renormal-
ization energy scale. An infinitesimal imaginary part (i0) is
included to obtain analyticity of the integralT (3)

µ...ν . Momen-
tum integration can be performed using Feynman’s param-
eterization, which combines propagators. After momentum
integration, an ultraviolet pole is subtracted under some
renormalization scheme. Then space-time dimension is re-
placed as εUV → −εIR to regulate an infrared pole. Finally,
the tensor integral is expressed in the following form [12]:

T (3)
µ...ν =

∑
i

Ci
µ...νJ

i
3(p

2
1, p

2
2, p

2
3;n

(i)
x , n(i)

y ),

where

J i
3(p

2
1, p

2
2, p

2
3;n

(i)
x , n(i)

y )

=
1

(4π)2
εIRΓ (−εIR)
(4πµ2

R)εIR

∫ 1

0
dx
∫ 1−x

0
dy
xn(i)

x yn(i)
y

D1−εIR
,

D = (p1x− p2y)2 − ρxy − p2
1x− p2

2y − i0,

ρ = p2
3 − (p1 + p2)2. (2.1)

The masses of internal particles are assumed to be massless.
The remaining task is to perform the parametric integration
of J3.

2.2 Two on-shell, one off-shell external legs

For the case of two on-shell and one off-shell external par-
ticles, we set p2

1 = p2
2 = 0, p2

3 �= 0 without any loss of
generality. The integration can be done in a straightfor-
ward way:

J3(0, 0, p2
3;nx, ny) =

1
(4π)2

εIRΓ (−εIR)
(4πµ2

R)εIR

×
∫ 1

0
dx
∫ 1−x

0
dy

xnxyny

(−p2
3xy − i0)1−εIR

(2.2)

=
εIRΓ (−εIR)

(4π)2

(−p̃3
2

4πµ2
R

)εIR 1
−p2

3

B(nx + εIR, ny + εIR)
nx + ny + 2εIR

,

where p̃3
2 = p2

3 + i0, and B(·, ·) is a beta function. The
infrared structure of the tensor integral can be obtained by
expanding (2.2) with respect to εIR. The results of expan-
sions under the MS scheme are shown in Appendix B. When
both nx and ny are non-zero, there is no IR divergence as

J3(0, 0, p2
3;nx, ny) → 1

(4π)2p2
3

(nx − 1)!(ny − 1)!
(nx + ny)!

(εIR → 0).

2.3 One on-shell, two off-shell external legs

In the case of one on-shell and two off-shell external parti-
cles, we set p2

1 = 0, p2
2 �= 0, p2

3 �= 0. The integral J3 becomes

J3(0, p2
2, p

2
3;nx, ny) =

1
(4π)2

εIRΓ (−εIR)
(4πµ2

R)εIR

×
∫ 1

0
dx
∫ 1−x

0
dy

× xnxyny

((p2
3 − p2

2)xy − p2
2y(1 − y) − i0)1−εIR

=
εIRΓ (−εIR)

(4π)2

(−p̃3
2

4πµ2
R

)εIR 1
−p2

3

B(nx + εIR, ny + εIR)
nx + ny + 2εIR

×2F1

(
1, 1 − εIR, 2 + nx;

p2
3 − p2

2

p̃3
2

)
nx + εIR
nx + 1

= J3(0, 0, p2
3;nx, ny)Gnx

(
p2
3 − p2

2

p̃3
2

)
, (2.3)

where

Gn(z) =
n+ εIR
n+ 1 2F1 (1, 1 − εIR, 2 + n; z) , (2.4)

and 2F1(·, ·, ·; ·) is the hypergeometric function. A definition
and some properties of the hypergeometric function and its
numerical evaluation can be found in Appendix A. When
p2
2 → 0, the hypergeometric function becomes

2F1 (1, 1 − εIR, 2 + nx; z) → nx + 1
nx + εIR

(z → 1).
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Then, the result (2.3) agrees with (2.2) when p2
2 → 0. The

infrared structure of the tensor integral can be obtained
by expanding (2.3) with respect to εIR. The results of
expansions under the MS scheme are shown in Appendix B.

3 Box integral

3.1 Massless one-loop box integral in n dimensions

Box integrations can be treated the same as in the vertex
case. The tensor integral of a massless one-loop vertex with
rank M ≤ 4 in space-time dimensions with n = 4 − 2εUV
can be written as

T
(4)
µ . . . ν︸ ︷︷ ︸

M

=
(
µ2

R
)εUV

∫
dnk

(2π)ni
kµ . . . kν

D1D2D3D4
,

where

D1 = k2 + i0,

D2 = (k + p1)2 + i0,

D3 = (k + p1 + p2)2 + i0,

D4 = (k + p1 + p2 + p3)2 + i0.

After the same procedure as that used in vertex integration,
we are left with following parametric integration:

J4(s, t; p2
1, p

2
2, p

2
3, p

2
4;nx, ny, nz) =

Γ (2 − εIR)
(4π)2 (4πµ2

R)εIR

×
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz
xnxynyznz

D2−εIR
,

(3.1)

where

D = −sxz − ty(1 − x− y − z) − p2
1xy − p2

2yz

−p2
3z(1 − x− y − z) − p2

4x(1 − x− y − z) − i0,

s = (p1 + p2)2,

t = (p1 + p4)2.

3.2 Four on-shell external legs

When all external particles are on-shell (massless), p2
1 =

p2
2 = p2

3 = p2
4 = 0, the integral of (3.1) can be

J4(s, t; 0, 0, 0, 0;nx, ny, nz) =
Γ (2 − εIR)

(4π)2 (4πµ2
R)εIR (3.2)

×
∫ 1

0
dxdydz

xnxynyznz

(−xzs− y(1 − x− y − z)t− i0)2−εIR
.

After applying the transformation

x = rv,

y = w(1 − r),

z = (1 − r)(1 − w),

the integral becomes

J4(s, t; 0, 0, 0, 0;nx, ny, nz)

=
Γ (2 − εIR)

(4π)2 (4πµ2
R)εIR

∫ 1

0
drr−1+nx+εIR(1 − r)−1+ny+nz+εIR

×
∫ 1

0
dv
∫ 1

0
dw

wny (1 − w)nzvnx

(−sv(1 − w) − t(1 − v)w − i0)2−εIR

=
Γ (2 − εIR)

(4π)2
(
4πµ2

R
)−εIR

B(nx + εIR, ny + nz + εIR)

×
∫ 1

0
dv
∫ 1

0
dw

wny (1 − w)nzvnx

(−sv(1 − w) − t(1 − v)w − i0)2−εIR
.

The r-integral just gives the beta function. Then, the v-
integral can be done:

Iv ≡
∫ 1

0
dv

vnx

[(−s+ sw + tw) v − tw − i0]2−εIR

=

(−t̃)εIR
wεIR−2

t2(1 + nx) 2F1

(
2 − εIR, 1 + nx, 2 + nx,−ξ̃w

)
,

where

ξ̃w =
ũ

t̃
+

s̃

t̃w
,

s̃ = s+ i0,

t̃ = t+ i0,

ũ = u+ i0 = (p1 + p3)2 + i0.

Here, we use s+ t+ u =
∑

i p
2
i = 0.

Further integration of the hypergeometric function is
not straightforward. When a (or b) in the hypergeometric
series 2F1(a, b, c; z) is a negative integer, the hypergeo-
metric series is truncated at some point and becomes a
polynomial. In order to express our target integrand as a
polynomial, a transformation formula,

2F1 (a, b, c; z)

=
Γ (c)Γ (c− a− b)
Γ (c− a)Γ (c− b)

z−a

×2F1

(
a, a− c+ 1, a+ b− c+ 1; 1 − 1

z

)

+
Γ (c)Γ (a+ b− c)

Γ (a)Γ (b)
(1 − z)c−a−bza−c

×2F1

(
c− a, 1 − a, c− a− b+ 1; 1 − 1

z

)
(|arg z| < π, |arg(1 − z)| < π),
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is used. After this transformation, the hypergeometric func-
tion becomes

2F1

(
2 − εIR, 1 + nx, 2 + nx,−ξ̃w

)
= (nx + 1)!Γ (εIR − 1)

×
[

1
Γ (nx + εIR)

(
−ξ̃w

)−1−nx

(3.3)

+
(1 + ξ̃w)εIR−1

ξ̃w

nx∑
l=0

(
1 +

1
ξ̃w

)l (−1)l

Γ (l + εIR)(nx − l)!

]
.

Though the hypergeometric function in the LHS of (3.3)
is finite when nx ≥ 1 and εIR → 0, the gamma function
in the RHS has a 1/εIR pole. We have confirmed that the
terms in brackets on the RHS of (3.3) start O(εIR) when
nx ≥ 1. Thus, there is no 1/εIR pole, as expected.

Then, the remaining w-integral in J4 becomes

J4(s, t; 0, 0, 0, 0;nx, ny, nz) =
−1

(4πt)2

( −t̃
4πµ2

R

)εIR

×B(nx + εIR, ny + nz + εIR)nx!Γ (εIR)Γ (1 − εIR)

×
∫ 1

0
dwwny−2+εIR(1 − w)nz

×


 1
Γ (nx + εIR)

(
−ξ̃w

)−1−nx

+

(
1 + ξ̃w

)εIR−1

ξ̃w

nx∑
l=0

(
1 +

1
ξ̃w

)l (−1)l

Γ (l + εIR)(nx − l)!


.

The w-integral can be solved in a term-by-term way for
each power of l. The final form of J4 is obtained to be

J4(s, t; 0, 0, 0, 0;nx, ny, nz) =
1

(4π)2st

×B(nx + εIR, ny + nz + εIR)nx!Γ (εIR)Γ (1 − εIR)

×
[( −t̃

4πµ2
R

)εIR (−t
s

)nx B(1 + nz, nx + ny + εIR)
Γ (nx + εIR)

×2F1 (1 + nx, nx + ny + εIR,

1 + nx + ny + nz + εIR,− ũ

s̃

)

+
( −s̃

4πµ2
R

)εIR nx∑
l=0

(−s
t

)l (−1)l

Γ (l + εIR)(nx − l)!

×B(1 + ny, l + nz + εIR)

×2F1 (1 + l, l + nz + εIR,

1 + l + ny + nz + εIR,− ũ

t̄

)]
, (3.4)

where t̄ = t− i0.
When the numerator of the integrand is unity, nx =

ny = nz = 0, the result of (3.4) is reduced to

J4(s, t; 0, 0, 0, 0; 0, 0, 0)

=
1

(4π)2st
B(εIR, εIR)Γ (1 − εIR)

εIR

×
[( −s̃

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũ

t̄

)

+
( −t̃

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũ

s̃

)]
.

(3.5)

We have checked that this result agrees with the precedence
result obtained by Duplanz̆ić and Niz̆ić [8] in both physical
and unphysical regions of kinematical variables, s and t.

Whennx = 0, the result of (3.4) has a shorter expression
without a fake pole, as follows:

J4(s, t; 0, 0, 0, 0; 0, ny, nz)

=
1

(4π)2st
B(εIR, ny + nz + εIR)Γ (1 − εIR)

×
[( −t̃

4πµ2
R

)εIR

B(1 + nz, ny + εIR)

×2F1

(
1, ny + εIR, 1 + ny + nz + εIR,− ũ

s̃

)

+
( −s̃

4πµ2
R

)εIR

B(1 + ny, nz + εIR) (3.6)

×2F1

(
1, nz + εIR, 1 + ny + nz + εIR,− ũ

t̄

)]
.

The infrared behavior of the loop integral can be obtained
by expanding this formula with respect to εIR, as shown
in Appendix B.

In some cases with nx �= 0, we can avoid the fake pole by
using the symmetry of the integrand. The basic integrand,
(3.2), is symmetric under the exchange x(nx) ↔ z(nz).
Then, the result with nx �= 0 and nz = 0 can be easily
obtained as

J4(s, t; 0, 0, 0, 0;nx, ny, 0)

= {J4(s, t, 0, 0, 0, 0; 0, ny, nz), nz → nx}
for any values of ny.

In the case of nx �= 0, nz �= 0, the integration has no IR
divergence with any value of ny ≥ 0. However we cannot
simply set εIR to be zero, because there is the fake pole.
After expanding (3.4) with respect to εIR, we confirmed
that the εIR pole was canceled out. An explicit form of the
Taylor expansion of the hypergeometric functions can be
found in Appendix A.
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3.3 One off-shell and three on-shell external legs

When one of four external particles is off-shell, we can set
it to be p1 without any loss of generality, p2

1 �= 0, p2
2 = p2

3 =
p2
4 = 0. Then, the integral of (3.1) can be written

J4(s, t; p2
1, 0, 0, 0;nx, ny, nz)

=
Γ (2 − εIR)

(4π)2 (4πµ2
R)εIR

∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz

× xnxynyznz

(−xzs− y(1 − x− y − z)t− p2
1xy − i0)2−εIR

.

(3.7)

After applying the same transformation as for the four-on-
shell case, the integral becomes

J4(s, t; p2
1, 0, 0, 0;nx, ny, nz)

=
Γ (2 − εIR)

(4π)2 (4πµ2
R)εIR B(nx + εIR, ny + nz + εIR)

×
∫ 1

0
dv
∫ 1

0
dw

× wny (1 − w)nzvnx

(−sv(1 − w) − t(1 − v)w − p2
1vw − i0)2−εIR

.

The v-integral can be done:

Iv =
∫ 1

0
dv

vnx

[(−s+ sw + tw − p2
1w) v − tw − i0]2−εIR

=

(−t̃)εIR
wεIR−2

t2(1 + nx) 2F1

(
2 − εIR, 1 + nx, 2 + nx,−ξ̃w

)
,

where

ξ̃w =
ũ

t̃
+

s̃

t̃w
.

Here, we use s+t+u = p2
1. This result is the same as that in

the four-on-shell case, except that u = −s− t+ p2
1 instead

of u = −s − t. After making the same transformation as
that for the four-on-shell case, the remaining w-integral
can be expressed as

J4(s, t; p2
1, 0, 0, 0;nx, ny, nz) =

1
(4π)2st

×B(nx + εIR, ny + nz + εIR)nx!Γ (εIR)Γ (1 − εIR)

×
[( −t̃

4πµ2
R

)εIR (−t
s

)nx 1
Γ (nx + εIR)

I(1) (3.8)

+
( −s̃

4πµ2
R

)εIR nx∑
l=0

(−1)l

Γ (l + εIR)(nx − l)!
I(2)

l

]
,

where

I(1) =
∫ 1

0
dwwnx+ny−1+εIR (1 − w)nz

(
1 +

ũ

s̃
w

)−1−nx

,

I(2)
l =

−t
s

∫ 1

0
dwwny (1 − w)nz

×
(

1 +
ũ

s̃
w

)−1−l (
1 +

t̃+ ũ

s̃
w

)l−1+εIR

.

The first integration, I(1), can be done:

I(1) = B(1 + nz, nx + ny + εIR)

×2F1

(
1 + nx, nx + ny + εIR, (3.9)

1 + nx + ny + nz + εIR,− ũ

s̃

)
.

For the second integration, I(2)
l , we used the following

binomial expansion:

(1 − w)nz wny =
nz∑

k1=0
nzCk1 (−1)k1 wny+k1 ,

wny+k1 =
(

s

t+ u

)ny+k1
((

1 +
t̃+ ũ

s̃
w

)
− 1
)ny+k1

=
(

s

p2
1 − s

)ny+k1

×
ny+k1∑
k2=0

ny+k1Ck2(−1)ny+k1−k2

(
1 +

t̃+ ũ

s̃
w

)k2

,

where mCn is the combinatorial defined as

mCn ≡ m!
n!(m− n)!

. (3.10)

Then the second integration, I(2)
l , can be done:

I(2)
l

=
nz∑

k1=0
nzCk1

(
s

p2
1 − s

)ny+k1

×
ny+k1∑
k2=0

ny+k1Ck2(−1)ny+k2

(−t
s

)

×
∫ 1

0
dw
(

1 +
ũ

s̃
w

)−(l+1)(
1 +

t̃+ ũ

s̃
w

)k2+l−1+εIR

=
nz∑

k1=0

ny+k1∑
k2=0

nzCk1ny+k1Ck2(−1)k1+k2

(
s

s− p2
1

)ny+k1

× 1
l + k2 + εIR

(
1 +

u

t

)l

×
[
2F1

(
1 + l, l + k2 + εIR, 1 + l + k2 + εIR,− ũ

t̄

)
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−
(
p̃1

2

s̃

)l+k2+εIR

×2F1 (1 + l, l + k2 + εIR,

1 + l + k2 + εIR,− ũp̃1
2

t̄s̃

)]
, (3.11)

where p̃1
2 = p2

1 + i0. Here, the integral J4(s, t; p2
1, 0, 0, 0;

nx, ny, nz) can be successfully expressed by a finite number
of hypergeometric functions. The infrared structure of the
tensor integral can be obtained by expanding (3.8) with
respect to εIR. The results of expansions under the MS
scheme are given in Appendix B.

When the numerator of the integrand is unity, nx =
ny = nz = 0, the second integration (3.11) is reduced to

I(2)
0 =

−t
s

∫ 1

0
dw
(

1 +
ũ

s̃
w

)−1(
1 +

t̃+ ũ

s̃
w

)εIR−1

=
1
εIR

[
2F1

(
1, εIR, 1 + εIR,− ũ

t̄

)
(3.12)

−
(
p̃1

2

s̃

)εIR

2F1

(
1, εIR, 1 + εIR,− ũp̃1

2

t̄s̃

)]
.

Then, (3.8) can be written as

J4(s, t; p2
1, 0, 0, 0; 0, 0, 0)

=
1

(4π)2st
B(εIR, εIR)Γ (1 − εIR)

εIR

×
[( −s̃

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũ

t̄

)

+
( −t̃

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũ

s̃

)

−
(−p̃1

2

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũp̃1

2

t̄s̃

)]

= J4(s, t; 0, 0, 0, 0; 0, 0, 0)

− 1
(4π)2st

B(εIR, εIR)Γ (1 − εIR)
εIR

(−p̃1
2

4πµ2
R

)εIR

×2F1

(
1, εIR, 1 + εIR,− ũp̃1

2

t̄s̃

)]
. (3.13)

We have again checked that this result agrees with the
precedence result obtained by Duplanz̆ić and Niz̆ić [8] in
both the physical and unphysical regions of the kinemati-
cal variables.

When nx = 0, the result of (3.8) does not have a fake
pole. The result is obtained to be

J4(s, t; p2
1, 0, 0, 0; 0, ny, nz)

=
1

(4π)2st
B(εIR, ny + nz + εIR)Γ (1 − εIR)

×
[( −t̃

4πµ2
R

)εIR

I(1) +
( −s̃

4πµ2
R

)εIR

I(2)
0

]
, (3.14)

where

I(1) = B(1 + nz, ny + εIR)

×2F1

(
1, ny + εIR, 1 + ny + nz + εIR,− ũ

s̃

)
. (3.15)

I(2)
0 =

nz∑
k1=0

ny+k1∑
k2=0

nz
Ck1ny+k1Ck2

×(−1)k1+k2

(
s

s− p2
1

)ny+k1 1
k2 + εIR

×
[

2F1

(
1, k2 + εIR, 1 + k2 + εIR,− ũ

t̄

)
(3.16)

−
(
p̃1

2

s̃

)εIR

2F1

(
1, k2 + εIR, 1 + k2 + εIR,− ũp̃1

2

t̄s̃

)]
.

In the case of nx �= 0, nz �= 0, the integration has no
IR divergence when using any value of ny ≥ 0. However,
we cannot simply set εIR to be zero again, because there
is the fake pole. After expanding (3.8) with respect to εIR,
we confirmed numerically that the εIR pole was canceled
out. The results of expansions under the MS scheme are
shown in Appendix B.

4 Numerical check of the results

The results of the vertex tensor integral are rather trivial.
However, those of the box tensor integral are very compli-
cated and highly non-trivial. We need some cross-checking
of our results compared with other independent calcula-
tions. For the scalar integral of the one- or two-off-shell
box integral, we can check our results numerically with
those of the precedence calculation done by Duplanz̆ić and
Niz̆ić [8]. In both in the physical and unphysical regions of
the kinematical variables, s and t, it was confirmed that
the results given in this report agree completely with those
in [8].

The basic ingredients of a numerical calculation of the
general case of the tensor integral are given in Appendix A.
Those formulas are (A.3)–(A5) to evaluate the hypergeo-
metric function and (A.10)–(A.21) to evaluate the gener-
alized hypergeometric functions.

At first, the results of a numerical evaluation of the
hypergeometric function of the type (A.4) are compared
with those obtained fromMathematica [13] at several val-
ues of l,m, n and z at random. We confirmed that both
results agree very well with each other to more than ten
digits. For the generalized hypergeometric function, our re-
cursion relation formulas, (A.10)–(A.21), were checked by
comparing those of numerical integration of (A.9) using the
numerical contour integral (NCI) method [14] developed
by the author. The function F̃

(n)
l,m(z), where n = 1, 2 and
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Table 1. Numerical comparison of F̃
(1)
2,3 (z) between analytic formulas given in

(A.11)–(A.15) and the numerical contour integral of (A.10)

z real/imag. analytic NCI

2000 + 10−15i real 3.167042847 × 10−7 3.167042848 × 10−7

imag. −1.308996938 × 10−7 −1.308996939 × 10−7

−2000 + 10−15i real 3.167042847 × 10−7 3.167042848 × 10−7

imag. O(10−24) O(10−18)

0.2 + 10−15i real 3.723185361 × 10−1 3.723185362 × 10−1

imag. O(10−16) O(10−12)

−0.2 + 10−15i real 1.809694496 × 10−1 1.809694496 × 10−1

imag. O(10−16) O(10−12)

Table 2. Numerical comparison of F̃
(2)
2,3 (z) between analytic formulas given in

(A.17)–(A.21) and the numerical contour integral of (A.16)

z real/imag. analytic NCI

2000 + 10−15i real 1.024874615 × 10−6 1.024874616 × 10−6

imag. −9.949558053 × 10−7 −9.949558053 × 10−7

−2000 + 10−15i real 1.230491374 × 10−6 1.230491374 × 10−6

imag. O(10−24) O(10−17)

0.2 + 10−15i real 1.624874690 × 10−1 1.624874690 × 10−1

imag. O(10−15) O(10−13)

−0.2 + 10−15i real 1.005561296 × 10−1 1.005561296 × 10−1

imag. O(10−15) O(10−12)

l = 2,m = 3, given in (A.9), was numerically evaluated
at several values of z, as shown in Tables 1 and 2, which
was compared with the NCI results. Both results gave very
good agreement to about ten digits, as shown in tables.
The imaginary part of the result must be zero, except the
z = 2000 + 0i case in the table. It was also numerically
confirmed very precisely.

The numerical results of the box tensor integral with
zero and one off-shell external legs obtained using (B.53)
and (B.79) are also compared with those using the NCI
method, integrating (3.1) and (3.7) directly. Both results
showvery goodagreementwithin aboutfivedigits, as shown
in Tables 3 and 4.

5 Conclusions

The general formulas of the 3- and 4-point tensor inte-
gral were obtained directly without any reduction method
to the scalar integrals. The IR behavior of the tensor in-
tegrals was clearly shown by expanding the results with
respect to the extra space-time dimensions due to the di-
mensional regularization. All results were expressed by very
short formulas in a suitable manner for a numerical calcula-
tion. The results of the scalar integral were compared with
the precedence results, and showed complete agreement in
both physical and unphysical regions of the kinematical
variables. For the IR finite case, the analytic results were
compared with the numerical contour integration and gave
a consistent result within the numerical integration error.

Table 3. Numerical comparison of J4(s, t; 0, 0, 0, 0; nx, ny, nz)
between analytic formulas given in (B.53) and the numeri-
cal contour integral. Here, we set kinematical variables in the
physical region at s = 123, t = −200 and µR = 1

nx ny nz real/imag. analytic NCI

1 2 3 real −2.15298 × 10−9 −2.15297 × 10−9

imag. −2.78647 × 10−9 −2.78650 × 10−9

2 0 2 real 9.74570 × 10−9 9.74572 × 10−9

imag. −3.22229 × 10−8 −3.22230 × 10−8

Table 4. Numerical comparison of J4(s, t; p2
1, 0, 0, 0; nx, ny, nz)

between analytic formulas given in (B.79) and the numerical
contour integral. Here, we set the kinematical variables in the
physical region s = 123, t = −200 p2

1 = 80 and µR = 1

nx ny nz real/imag. analytic NCI

1 2 3 real −7.88683 × 10−10 −7.88689 × 10−10

imag. −1.95176 × 10−9 −1.95176 × 10−9

2 0 2 real 1.48133 × 10−8 1.48133 × 10−8

imag. −2.04318 × 10−8 −2.04318 × 10−8
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Appendix A: Numerical calculation
of the hypergeometric function

In this appendix, the basic properties of the hypergeometric
function [15] and their numerical evaluation are summa-
rized. The 1/εIR expansion of the hypergeometric functions
appearing in the tensor integrals and their numerical eval-
uation are also shown.

A.1 Hypergeometric function

The Gauss-series representation of the hypergeometric
function is

2F1(a, b, c; z) = 2F1(b, a, c; z)

=
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, (A.1)

where (·)k is Pochhammer’s symbol defined as

(a)k =
Γ (a+ k)
Γ (a)

.

The Euler integral representation is

2F1(a, b, c; z) (A.2)

=
Γ (c)

Γ (b)Γ (c− b)

∫ 1

0
τ b−1(1 − τ)c−b−1(1 − zτ)−adτ

(Rc > Rb > 0).

When a is a negative integer, such as a = −m, the Gauss
series is truncated at k = m and becomes a polynomial,

2F1(−m, b, c; z) =
m∑

k=0

(−m)k(b)k

(c)k

zk

k!

=
m∑

k=0

(b)k

(c)k
mCk(−z)k, (A.3)

where mCk is the combinatorial defined in (3.10). For nu-
merical evaluations of tensor integrals, the following type
of the hypergeometric function might be numerically cal-
culated as

2F1(l,m+ 1, n+m+ 2; z)

=
1

B(m+ 1, n+ 1)

∫ 1

0
τm(1 − τ)n(1 − zτ)−ldτ

=
n∑

k1=0

m+k1∑
k2=0

(−1)k1+k2 nCk1m+k1Ck2

B(m+ 1, n+ 1)
1

zm+k1

×
∫ 1

0
(1 − zτ)−l+k2dτ, (A.4)

where l,m, n are positive integers. Here, integration can
be performed as∫ 1

0
(1 − zτ)−l+k2dτ (A.5)

=




− ln(1 − z)
z

, k2 − l + 1 = 0,

1
k2 − l + 1

(1 − z)k2−l+1 − 1
−z , k2 − l + 1 �= 0.

This formulas can be used for a numerical evaluation of
hypergeometric functions of this type.

A.2 Generalized hypergeometric function

For a Laurent expansion of the hypergeometric function
with respect to εIR, the following generalized hypergeo-
metric function is necessary:

3F2({a1, a2, a3}, {b1, b2}; z)

=
∞∑

n=0

(a1)n(a2)n(a3)n

(b1)n(b2)n

zn

n!
(A.6)

=
Γ (b1)Γ (b2)

Γ (a1)Γ (b1 − a1)Γ (a2)Γ (b2 − a2)

×
∫ 1

0
dτ
∫ τ

0
dv (A.7)

× va1−b2(1 − v)b1−a1−1τa2−1

× (v − τ)b2−a2−1(1 − zτ)−a3 ,

and

4F3({a1, a2, a3, a4}, {b1, b2, b3}; z)

=
∞∑

n=0

(a1)n(a2)n(a3)n(a4)n

(b1)n(b2)n(b3)n

zn

n!
. (A.8)

Those generalized hypergeometric functions appear in the
following integral:

F̃
(n)
j1,j2

(z) ≡ (−1)n

n!

∫ 1

0
dττ j1−1(1 − zτ)−(j2+1) lnn τ,

(A.9)

where j1 is a positive integer and j2 is an integer (it can
be negative).

When n = 1, the integral becomes

F̃
(1)
j1,j2

(z)

= −
∫ 1

0
dττ j1−1(1 − zτ)−(j2+1) ln τ (A.10)
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= 3F2({j1, j1, j2 + 1}, {j1 + 1, j1 + 1}; z)
j21

=
∞∑

k=0

zk

(j1 + k)2(j2 + k + 1)B(j2 + 1, k + 1)
.

When j2 is a negative integer, such as j2 = −j ≤ −1, this
function can be expressed by a polynomial,

F̃
(1)
j1,−j(z) =

j−1∑
k=0

j−1Ck(−z)k

(j1 + k)2
. (A.11)

When J1 = 1 and j2 = 0, 1, the integral can be performed
easily as

F̃
(1)
1,0 (z) =

Li2(z)
z

, (A.12)

F̃
(1)
1,1 (z) = − ln(1 − z)

z
. (A.13)

When j1 = 1 and j2 ≥ 1, we can use the following recur-
sion relation:

F̃
(1)
1,j2+1(z) =

j2
j2 + 1

F̃
(1)
1,j2

+
(1 − z)−j2 − 1
j2(j2 + 1)z

. (A.14)

For the general case, the function F̃ (1)
j1,j2

(z) can be obtained

using F̃ (1)
1,· ,

F̃
(1)
j1,j2

(z) =
1

zj1−1

j1−1∑
k=0

(−1)k
j1−1CkF̃

(1)
1,j2−k(z). (A.15)

When n = 2, the integral becomes

F̃
(2)
j1,j2

(z)

=
1
2

∫ 1

0
dττ j1−1(1 − zτ)−(j2+1) ln2 τ (A.16)

= 4F3({j1, j1, j1, j2 + 1}, {j1 + 1, j1 + 1, j1 + 1}; z)
j31

=
∞∑

k=0

zk

(j1 + k)3(j2 + k + 1)B(j2 + 1, k + 1)
.

When j2 = −j ≤ −1, it is also represented by a polynomial,

F̃
(2)
j1,−j(z) =

j−1∑
k=0

j−1Ck(−z)k

(j1 + k)3
. (A.17)

When J1 = 1 and j2 = 0, 1, the integral can be performed
easily as follows:

F̃
(2)
1,0 (z) =

Li3(z)
z

, (A.18)

F̃
(2)
1,1 (z) =

Li2(z)
z

. (A.19)

When j1 = 1 and j2 ≥ 1, we can use the following recur-
sion relation:

(j2 + 1)F̃ (2)
1,j2+1(z) − j2F̃

(2)
1,j2

(z) − F̃
(1)
1,j2

(z) = 0. (A.20)

For the general case, the function F̃ (2)
j1,j2

(z) can be obtained

using F̃ (2)
1,· (z),

F̃
(2)
j1,j2

(z) =
1

zj1−1

j1−1∑
k=0

(−1)k
j1−1CkF̃

(2)
1,j2−k(z). (A.21)

A.3 1/εIR expansion of a hypergeometric function

In the general form of the tensor integrals, the following
type of integral appears:

Il,m,n ≡
∫ 1

0
τ l+n−1+εIR(1 − τ)m(1 − zτ)−(l+1)dτ,

= B(1 +m, l + n+ εIR) (A.22)

×2F1 (1 + l, l + n+ εIR, 1 + l + n+m+ εIR, z) .

In order to show the IR structure of the function, a series
expansion of the function Il,m,n with respect to εIR might
be considered,

Il,m,n =
∞∑

j=−1

F (j)
l,m,n(z)εj

IR, (A.23)

where l,m, n are non-negative integers. When l = m =
n = 0, the Laurent expansion of the function can be

I0,0,0 =
∫ 1

0

(1 − zτ)−1

τ1−εIR
dτ

= B(1, εIR)2F1 (1, εIR, 1 + εIR, z) ,

=
∫ 1

0
dτ

[
δ(τ)
εIR

(1 − zτ)−1 +
(1 − zτ)−1 − 1

τ

+εIR
ln τ
τ

(
(1 − zτ)−1 − 1

)
+ O (ε2IR)

]
(A.24)

=
1
εIR

− ln(1 − z) − Li(z)εIR + O (ε2IR) .
Then the first three terms of (A.23) are

F (−1)
0,0,0 (z) = 1, (A.25)

F (0)
0,0,0(z) = − ln(1 − z), (A.26)

F (1)
0,0,0(z) = −Li(z). (A.27)

When l = m = 0, n �= 0, the integral becomes

I0,0,n =
∫ 1

0
τn−1+εIR(1 − zτ)−1dτ. (A.28)
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Then, the first three terms of (A.23) are

F (0)
0,0,n(z) = 2F1(1, n, 1 + n; z)

n
, (A.29)

F (1)
0,0,n(z) = −F̃ (1)

n,0(z), (A.30)

F (2)
0,0,n(z) = F̃

(2)
n,0(z). (A.31)

When l = 0,m �= 0, n = 0, the integral becomes

I0,m,0 =
∫ 1

0
τ−1+εIR(1 − τ)m(1 − zτ)−1dτ

=
m∑

k=0
mCk(−1)k

∫ 1

0
τk−1+εIR(1 − zτ)−1dτ

=
m∑

k=0
mCk(−1)kI0,0,k. (A.32)

Then, the first three terms of (A.23) are

F (−1)
0,m,0(z) = F (−1)

0,0,0 (z), (A.33)

F (0)
0,m,0(z) =

m∑
k=0

mCk(−1)kF (0)
0,0,k(z), (A.34)

F (1)
0,m,0(z) =

m∑
k=0

mCk(−1)kF (1)
0,0,k(z). (A.35)

When l = 0,m �= 0, n �= 0, the integral becomes

I0,m,n =
∫ 1

0
τn−1+εIR(1 − τ)m(1 − zτ)−1dτ

=
m∑

k=0
mCk(−1)k

∫ 1

0
τn+k−1+εIR(1 − zτ)−1dτ

=
m∑

k=0
mCk(−1)kI0,0,n+k. (A.36)

Then, the first three terms of (A.23) are

F (0)
0,m,n(z) = B(1 +m,n)2F1(1, n, 1 + n+m; z),

(A.37)

F (1)
0,m,n(z) =

m∑
k=0

mCk(−1)k+1F̃
(1)
n+k,0(z), (A.38)

F (2)
0,m,n(z) =

m∑
k=0

mCk(−1)kF̃
(2)
n+k,0(z). (A.39)

When l �= 0,m = 0, n = 0, the integral becomes

Il,0,0 =
∫ 1

0
τ l−1+εIR(1 − zτ)−(l+1)dτ. (A.40)

Then, the first three terms of (A.23) are

F (0)
l,0,0(z) =

(1 − z)−l

l
, (A.41)

F (1)
l,0,0(z) = − 2F1(l, l, l + 1; z)

l2
, (A.42)

F (2)
l,0,0(z) = F̃

(2)
l,l (z). (A.43)

When l �= 0,m = 0, n �= 0, the integral becomes

Il,0,n =
∫ 1

0
τ l+n−1+εIR(1 − zτ)−(l+1)dτ. (A.44)

Then, the first three terms of (A.23) are

F (0)
l,0,n(z) = 2F1(1 + l, l + n, 1 + l + n; z)

l + n
, (A.45)

F (1)
l,0,n(z) = −F̃ (1)

l+n,l(z), (A.46)

F (2)
l,0,n(z) = F̃

(2)
l+n,l(z). (A.47)

When l �= 0,m �= 0, n = 0, the integral becomes

Il,m,0 =
∫ 1

0
τ l−1+εIR(1 − τ)m(1 − zτ)−(l+1)dτ. (A.48)

Then, the first three terms of (A.23) are

F (0)
l,m,0(z) = B(l, 1 +m)2F1(1 + l, l, 1 + l +m; z),

(A.49)

F (1)
l,m,0(z) =

m∑
k=0

mCk(−1)k+1F̃
(1)
l+k,l(z), (A.50)

F (2)
l,m,0(z) =

m∑
k=0

mCk(−1)kF̃
(2)
l+k,l(z). (A.51)

When l �= 0,m �= 0, n �= 0, the integral becomes

Il,m,n =
∫ 1

0
τ l+n−1+εIR(1− τ)m(1− zτ)−(l+1)dτ. (A.52)

Then, the first three terms of (A.23) are

F (0)
l,m,n = B(l + n, 1 +m) (A.53)

×2F1(1 + l, l + n, 1 + l +m+ n; z),

F (1)
l,m,n =

m∑
k=0

mCk(−1)k+1F̃
(1)
l+n+k,l(z), (A.54)

F (2)
l,m,n =

m∑
k=0

mCk(−1)kF̃
(2)
l+n+k,l(z). (A.55)

Appendix B: 1/εIR expansion of tensor
integrations with the MS scheme

We give 1/εIR expansions of tensor integrals under the MS
scheme in this appendix.TheMS scheme is realizedwith the
following replacement of the renormalization energy scale:

µ2
R → µ2

R
eγE

4π
,

where γE is Euler’s constant.
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B.1 Vertex with one off-shell external line

The general result of the vertex tensor integral is shown
in (2.2). The IR structure of this function can be obtained
by a Laurent expansion of the beta function for the IR
singular case.

B.1.1 nx = ny = 0

When nx = ny = 0, the tensor integral becomes

J3(0, 0, p2
3; 0, 0)

=
Γ (−εIR)

(4π)2

(−p̃3
2

4πµ2
R

)εIR 1
−p2

3

B(εIR, εIR)
2

. (B.1)

After the εIR expansion with the MS scheme,

J3(0, 0, p2
3; 0, 0) (B.2)

→ 1
(4π)2p2

3

[
C(−2)
31

ε2IR
+

C(−1)
31

εIR
+ C(0)

31 +O(εIR)

]
,

where

C(−2)
31 = 1, (B.3)

C(−1)
31 = ln

(−p2
3

µ2
R

)
, (B.4)

C(0)
31 = − π2

12
+

1
2

ln2
(−p2

3

µ2
R

)
. (B.5)

B.1.2 nx + ny �= 0

The general result of the vertex tensor integral, (2.2), is
symmetric under nx and ny exchanges. When one of nx or
ny is non-zero, the tensor integral becomes

J3(0, 0, p2
3;n, 0) = J3(0, 0, p2

3; 0, n) (B.6)

=
εIRΓ (−εIR)

(4π)2

(−p̃3
2

4πµ2
R

)εIR 1
−p2

3

B(n+ εIR, εIR)
n+ 2εIR

.

After an εIR expansion with the MS scheme,

J3(0, 0, p2
3;n, 0) = J3(0, 0, p2

3; 0, n) (B.7)

→ 1
(4π)2p2

3

[
C(−1)
32

εIR
+ C(0)

32 +O(εIR)

]
,

where

C(−1)
32 =

1
n
, (B.8)

C(0)
32 = − 2

n2 +
1
n

(
ln
(−p2

3

µ2
R

)
− Hn−1

)
, (B.9)

where Hm is the harmonic number, defined as

Hm =
∑m

j=1
1
j
,

B.1.3 nx �= 0, ny �= 0

In this case, because there is no IR divergence in (2.2), εIR
can be set to zero,

J3(0, 0, p2
3;nx, ny)

→ 1
(4π)2p2

3

(nx − 1)!(ny − 1)!
(nx + ny)!

. (B.10)

B.2 Vertex with two off-shell external lines

B.2.1 nx = ny = 0

The function G0(z), defined by (2.4), can be expanded with
respect to εIR around zero as

G0(z) = G(1)
0 (z)εIR + G(2)

0 (z)ε2IR + O (ε3IR) , (B.11)

where

G(1)
0 (z) =

ln(1 − z)
z

, (B.12)

G(2)
0 (z) =

ln2(1 − z)
2z

. (B.13)

Then, the vertex integral J3(0, p2
2, p

2
3; 0, 0) can be expressed

after an εIR expansion with the MS scheme as

J3(0, p2
2, p

2
3; 0, 0)

→ 1
(4π)2p2

3

[
C(−1)
33

εIR
+ C(0)

33 +O(εIR)

]
, (B.14)

where

C(−1)
33 = C(−2)

31 G(1)
0

(
p2
3 − p2

2

p̃3
2

)
, (B.15)

C(0)
33 = C(−1)

31 G(1)
0

(
p2
3 − p2

2

p̃3
2

)

+C(−2)
31 G(2)

0

(
p2
3 − p2

2

p̃3
2

)
. (B.16)

B.2.2 nx = 0, ny �= 0

Because the vertex integral J3(0, p2
2, p

2
3; 0, n) is IR finite,

we can set εIR to be zero:

J3(0, p2
2, p

2
3; 0, n) =

1
(4π)2p2

3
C(0)
34 , (B.17)

where

C(0)
34 = C(−1)

32 G(1)
0

(
p2
3 − p2

2

p̃3
2

)
. (B.18)
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B.2.3 nx �= 0, ny = 0

For non-zero values of n, Gn(z) can be expanded with
respect to εIR around zero as

Gn(z) = G(0)
n (z) + G(1)

n (z)εIR + O (ε2IR) , (B.19)

where

G(0)
n (z) =

n

n+ 1 2F1(1, 1, 2 + n; z), (B.20)

G(1)
n (z)

=
1

n+ 1 2F1(1, 1, 2 + n; z) − n

(
z − 1
z

)n ln2(1 − z)
2z

+
n

zn

n∑
k=1

nCk(z − 1)n−k

× (1 − z)k (1 − k ln(1 − z)) − 1
k2z

. (B.21)

Then, the vertex integral J3(0, p2
2, p

2
3;n, 0) can be expressed

after an εIR expansion with the MS scheme as

J3(0, p2
2, p

2
3;n, 0)

→ 1
(4π)2p2

3

[
C(−1)
35

εIR
+ C(0)

35 +O(εIR)

]
, (B.22)

where

C(−1)
35 = C(−1)

32 G(0)
0

(
p2
3 − p2

2

p̃3
2

)
, (B.23)

C(0)
35 = C(−1)

32 G(1)
0

(
p2
3 − p2

2

p̃3
2

)

+C(0)
31 G(0)

0

(
p2
3 − p2

2

p̃3
2

)
. (B.24)

B.2.4 nx �= 0, ny �= 0

In this case, there is no IR divergence and εIR can be set
to zero,

J3(0, p2
2, p

2
3;nx, ny)

=
1

(4π)2p2
3

(nx − 1)!(ny − 1)!
(nx + ny)!

×2F1

(
1, 1, 2 + nx;

p2
3 − p2

2

p̃3
2

)
nx

nx + 1
. (B.25)

B.3 Box integral with all on-shell external legs

The general result of the box tensor integral with all on-
shell external legs is shown in (3.4). The IR structure of
this function can be obtained by a Laurent expansion of
the beta function for the IR singular case.

B.3.1 nx = ny = nz = 0

When the numerator of the integrand is unity, nx = ny =
nz = 0, the box tensor integral result, (3.4), is reduced to

J4(s, t, 0, 0, 0, 0; 0, 0, 0)

=
1

(4π)2st
B(εIR, εIR)Γ (1 − εIR)

εIR

×
[( −s̃

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũ

t̄

)
(B.26)

+
( −t̃

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũ

s̃

)]
.

After using a Laurent expansion of the hypergeometric
function of (A.24) the loop integral with the MS scheme is

J4(s, t, 0, 0, 0, 0; 0, 0, 0) (B.27)

→ 1
(4π)2s t

[
C(−2)
41

ε2IR
+

C(−1)
41

εIR
+ C(0)

41 +O(εIR)

]
,

C(−2)
41 = 4, (B.28)

C(−1)
41 = 2

[
ln
(−s̃
µ2

R

)
+ ln

(−t̃
µ2

R

)]
, (B.29)

C(0)
41

= − π2

3
− 2Li2

(
− ũ

s̃

)
− 2Li2

(
− ũ

t̄

)
+ ln2

(−s̃
µ2

R

)

+ ln2
(−t̃
µ2

R

)
− 2 ln

(−s̃
µ2

R

)
ln
(

1 +
ũ

t̄

)

−2 ln
(−t̃
µ2

R

)
ln
(

1 +
ũ

s̃

)
. (B.30)

B.3.2 nx = 0, ny = 0, nz �= 0

When nx = ny = 0, nz �= 0, the result is reduced to

J4(s, t; 0, 0, 0, 0; 0, 0, nz)

=
B(εIR, nz + εIR)Γ (1 − εIR)

(4π)2st

×
[( −s̃

4πµ2
R

)εIR

B(1, nz + εIR)

×2F1

(
1, nz + εIR, 1 + nz + εIR,− ũ

t̄

)

+
( −t̃

4πµ2
R

)εIR

B(εIR, 1 + nz)

× 2F1

(
1, εIR, 1 + nz + εIR,− ũ

s̃

)]
. (B.31)
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Laurent expansions of beta and gamma function with the
MS scheme are obtained as follows:

B(n1 + εIR, n2 + εIR)Γ (1 − εIR)
( −q2

4πµ2
R

)εIR

(B.32)

→ A(−1)
n1,n2(q2)
εIR

+ A(0)
n1,n2

(q2) + A(1)
n1,n2

(q2)εIR,

where

A(−1)
0,n (q2) = 1, (B.33)

A(0)
0,n(q2) = ln

(−q2
µ2

R

)
− Hn−1, (B.34)

A(1)
0,n(q2)

=
1
6

[
3H2

n−1 + π2 + 3 ln
(−q2
µ2

R

)(
ln
(−q2
µ2

R

)
− 2Hn

)

−9ψ(1)(n)

]
, (B.35)

and

A(−1)
n1,n2

(q2) = 0, (B.36)

A(0)
n1,n2

(q2) = B(n1, n2), (B.37)

A(1)
n1,n2

(q2) = B(n1, n2) (B.38)

×
(

Hn1−1 + Hn2 − 2Hn1+n2−1 + ln
(−q2
µ2

R

))
,

where n, n1, n2 are positive integers. Here, ψ(1)(z) is the
first derivative of the digamma function, given by

ψ(1)(n) =
π2

6
−

n−1∑
k=1

1
k2 .

Finally, the tensor integral can be obtained to be

J4(s, t; 0, 0, 0, 0; 0, 0, nz) (B.39)

→ 1
(4π)2st

[
C(−2)
42

ε2IR
+

C(−1)
42

εIR
+ C(0)

42 +O(εIR)

]
,

where

C(−2)
42 = A(−1)

0,nz
(t̃)F (−1)

0,nz,0

(
− ũ

s̃

)
, (B.40)

C(−1)
42 = A(−1)

0,nz
(s̃)F (0)

0,0,nz

(
− ũ

t̄

)

+A(−1)
0,nz

(t̃)F (0)
0,nz,0

(
− ũ

s̃

)

+A(0)
0,nz

(t̃)F (−1)
0,nz,0

(
− ũ

s̃

)
, (B.41)

C(0)
42 = A(−1)

0,nz
(s̃)F (1)

0,0,nz

(
− ũ

t̄

)

+A(0)
0,nz

(s̃)F (0)
0,0,nz

(
− ũ

t̄

)

+A(−1)
0,nz

(t̃)F (1)
0,nz,0

(
− ũ

s̃

)

+A(0)
0,nz

(t̃)F (0)
0,nz,0

(
− ũ

s̃

)

+A(1)
0,nz

(t̃)F (−1)
0,nz,0

(
− ũ

s̃

)
. (B.42)

B.3.3 nx = 0, ny �= 0, nz = 0

When nx = 0 and both ny and nz are non-zero, J4 becomes

J4(s, t; 0, 0, 0, 0; 0, ny, nz)

=
1

(4π)2st
B(εIR, ny + nz + εIR)Γ (1 − εIR)

×
[( −s̃

4πµ2
R

)εIR

B(1 + ny, nz + εIR)

×2F1

(
1, nz + εIR, 1 + ny + nz + εIR,− ũ

t̄

)

+
( −t̃

4πµ2
R

)εIR

B(1 + nz, ny + εIR) (B.43)

×2F1

(
1, ny + εIR, 1 + ny + nz + εIR,− ũ

s̃

)]
.

One can see that J4(s, t; 0, 0, 0, 0; 0, ny, nz) is symmetric
under a simultaneous exchange of t ↔ s, ny ↔ nz. Then,
for the case ofnx = nz = 0, ny �= 0, the required integration
can be obtained as

J4(s, t; 0, 0, 0; 0, ny, 0) (B.44)

= {J4(s, t; 0, 0, 0; 0, 0, nz), nz → ny, s ↔ t}.

B.3.4 nx = 0, ny �= 0, nz �= 0

Let us start from (B.43). There is no IR singular pole in
the square bracket and the 1

εIR
pole in the Beta function

in front of the square brackets. One thus needs to expand
the terms in the square bracket up to O (εIR).

Then, finally we obtain

J4(s, t; 0, 0, 0, 0; 0, ny, nz) (B.45)

=
1

(4π)2st
B(εIR, ny + nz + εIR)Γ (1 − εIR)

×
[( −s̃

4πµ2
R

)εIR
(
F (0)

0,ny,nz

(
− ũ

t̄

)
+ εIRF (1)

0,ny,nz

(
− ũ

t̄

))
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+
( −t̃

4πµ2
R

)εIR(
F (0)

0,nz,ny

(
− ũ

s̃

)
+ εIRF (1)

0,nz,ny

(
− ũ

s̃

))]
.

After an εIR expansion with the MS scheme, it is ob-
tained as

J4(s, t; 0, 0, 0, 0; 0, ny, nz)

→ 1
(4π)2st

[
C(−1)
43

εIR
+ C(0)

43 +O(εIR)

]
, (B.46)

where

C(−1)
43 = F (0)

0,ny,nz

(
− ũ

t̄

)
+ F (0)

0,nz,ny

(
− ũ

s̃

)
, (B.47)

C(0)
43 = F (1)

0,ny,nz

(
− ũ

t̄

)
+ F (1)

0,nz,ny

(
− ũ

s̃

)

+F (0)
0,ny,nz

(
− ũ

t̄

)(
ln
(

− s̃

µ2
R

)
− Hny+nz−1

)

+F (0)
0,nz,ny

(
− ũ

s̃

)(
ln
(

− t̃

µ2
R

)
− Hny+nz−1

)
.

B.3.5 nx �= 0, ny = 0, nz = 0

The basic integrand, (3.2), is symmetric under the exchange
x(nx) ↔ z(nz). Then, the result can be easily obtained as

J4(s, t; 0, 0, 0, 0;nx, 0, 0)

= {J4(s, t; 0, 0, 0, 0; 0, 0, nz), nz → nx}. (B.48)

B.3.6 nx �= 0, ny �= 0, nz = 0

When nz = 0, the result of the integration, (3.4), can
be written

J4(s, t; 0, 0, 0, 0;nx, ny, 0)

=
1

(4π)2st
B(nx + εIR, ny + εIR)nx!Γ (εIR)Γ (1 − εIR)

×
[( −t̃

4πµ2
R

)εIR (−t
s

)nx B(1 + nx + ny + εIR)
Γ (nx + εIR)

×2F1

(
1 + nx, nx + ny + εIR, 1 + nx + ny + εIR,− ũ

s̃

)

+
( −s̃

4πµ2
R

)εIR nx∑
l=0

(−s
t

)l (−1)l

Γ (l + εIR)(nx − l)!

×B(1 + ny, l + εIR)

×2F1

(
1 + l, l + εIR, 1 + l + ny + εIR,− ũ

t̄

)]
. (B.49)

After an εIR expansion with the MS scheme, it is ob-
tained as

J4(s, t; 0, 0, 0, 0;nx, ny, 0)

→ 1
(4π)2st

[
C(−1)
44

εIR
+ C(0)

44 +O(εIR)

]
, (B.50)

where

C(−1)
44

= nx

(
− t

s

)nx

A(0)
nx,ny

(t̃)F (0)
nx,0,ny

(
− ũ

s̃

)

+A(0)
nx,ny

(s̃)F (−1)
0,ny,0

(
− ũ

t̄

)

+
nx∑
l=1

l
( s
t

)l

nxClA(0)
nx,ny

(s̃)F (0)
l,ny,0

(
− ũ

t̄

)
, (B.51)

C(0)
44 = nx

(
− t

s

)nx

×
[
A(1)

nx,ny
(t̃)F (0)

nx,0,ny

(
− ũ

s̃

)

+A(0)
nx,ny

(t̃)F (1)
nx,0,ny

(
− ũ

s̃

)

−A(0)
nx,ny

(t̃)F (0)
nx,0,ny

(
− ũ

s̃

)
Hnx−1

]

+A(1)
nx,ny

(s̃)F (−1)
0,ny,0

(
− ũ

t̄

)
+ A(0)

nx,ny
(s̃)F (0)

0,ny,0

(
− ũ

t̄

)

+
nx∑
l=1

l
( s
t

)l

nx
Cl

[
A(1)

nx,ny
(s̃)F (0)

l,ny,0

(
− ũ

t̄

)

+ A(0)
nx,ny

(s̃)
(

F (1)
l,ny,0

(
− ũ

t̄

)
− F (0)

l,ny,0

(
− ũ

t̄

)
Hl−1

)]
.

B.3.7 nx �= 0, ny = any value, nz �= 0

In the case of nx �= 0, nz �= 0, the integration has no IR
divergence with any value of ny ≥ 0. The result is given by

J4(s, t; 0, 0, 0, 0;nx, ny, nz)

→ 1
(4π)2st

[
C(0)
45 +O(εIR)

]
, (B.52)

where

C(0)
45 = nx

(
− t

s

)nx
[
A(1)

nx,ny+nz
(t̃)F (0)

nx,nz,ny

(
− ũ

s̃

)

+A(0)
nx,ny+nz

(t̃)

×
(

F (1)
nx,nz,ny

(
− ũ

s̃

)
− F (0)

nx,nz,ny

(
− ũ

s̃

)
Hnx−1

)]

+A(0)
nx,ny+nz

(s̃)F (0)
0,ny,nz

(
− ũ

t̄

)
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+
nx∑
l=1

l
( s
t

)l

nxCl

[
A(1)

nx,ny+nz
(s̃)F (0)

l,ny,nz

(
− ũ

t̄

)
(B.53)

+A(0)
nx,ny+nz

(s̃)
(
F (1)

l,ny,nz

(
− ũ

t̄

)
− F (0)

l,ny,nz

(
− ũ

t̄

)
Hl−1

)]
.

B.4 Box integral with one off-shell
and three on-shell external legs

The general result of the box tensor integral with one off-
shell and three on-shell external legs is shown in (3.8) with
(3.9) and (3.11). The IR structure of this function can be
obtained by the Laurent expansion of the beta function for
the IR singular case.

B.4.1 nx = ny = nz = 0

When the numerator of the integrand is unity, nx = ny =
nz = 0, the second integral I(2) is reduced to

I(2) =
∫ 1

0
dw
(

1 +
ũ

s̃
w

)−1(
1 +

t̃+ ũ

s̃
w

)εIR−1

(B.54)

=
−s
t

1
εIR

[
2F1

(
1, εIR, 1 + εIR,− ũ

t̄

)

−
(
p̃2
1

s̃

)εIR

2F1

(
1, εIR, 1 + εIR,− ũp̃2

1

t̄s̃

)]
,

where p̃2
1 = p2

1 +i0. Then, the final result can be written as

J4(s, t; p2
1, 0, 0, 0; 0, 0, 0)

=
1

(4π)2st
B(εIR, εIR)Γ (1 − εIR)

εIR

×
[( −s̃

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũ

t̄

)

+
( −t̃

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũ

s̃

)

−
( −p̃2

1

4πµ2
R

)εIR

2F1

(
1, εIR, 1 + εIR,− ũp̃2

1

t̄s̃

)]
,

= J4(s, t; 0, 0, 0, 0; 0, 0, 0)

− 1
(4π)2st

B(εIR, εIR)Γ (1 − εIR)
εIR

( −p̃2
1

4πµ2
R

)εIR

×2F1

(
1, εIR, 1 + εIR,− ũp̃2

1

t̄s̃

)]
. (B.55)

After an εIR expansionwith theMS scheme, it is obtained as

J4(s, t, p2
1, 0, 0, 0; 0, 0, 0) (B.56)

→ 1
(4π)2st

[
C(−2)
46

ε2IR
+

C(−1)
46

εIR
+ C(0)

46 +O(εIR)

]
,

where

C(−2)
46 = C(−2)

41 − 2, (B.57)

C(−1)
46 = C(−1)

41 − 2
[
ln
(−p̃2

1

µ2
R

)
− ln

(
1 +

ũp̃1
2

t̄s̃

)]
,

(B.58)

C(0)
46 = C(0)

41 +
[

π2

6
+ 2Li2

(
− ũp̃2

1

t̄s̃

)
− ln2

(−p̃2
1

µ2
R

)

+ 2 ln
(−p̃2

1

µ2
R

)
ln
(

1 +
ũp̃2

1

t̄s̃

)]
. (B.59)

B.4.2 nx = 0, ny + nz ≥ 1

When nx = 0, and ny, nz have any value with ny +nz ≥ 1,
the final result can be written as

J4(s, t, p2
1, 0, 0, 0; 0, ny, nz)

=
1

(4π)2st
B(εIR, ny + nz + εIR)Γ (1 − εIR)

×
[( −t̃

4πµ2

)εIR

I(1) +
( −s̃

4πµ2

)εIR

I(2)

]
. (B.60)

The integrals I(1) and I(2) can be done easily:

I(1) = B(ny + εIR, 1 + nz)

×2F1

(
1, ny + εIR, 1 + ny + nz + εIR,− ũ

s̃

)
, (B.61)

I(2)
0 =

nz∑
k1=0

ny+k1∑
k2=0

nzCk1ny+k1Ck2(−1)k1+k2

×
(

s

s− p2
1

)ny+k1 1
k2 + εIR

×
[

2F1

(
1, k2 + εIR, 1 + k2 + εIR,− ũ

t̄

)
(B.62)

−
(
p̃1

2

s̃

)εIR

2F1

(
1, k2 + εIR, 1 + k2 + εIR,− ũp̃1

2

t̄s̃

)]
.

After an εIR expansionwith theMS scheme, it is obtained as

J4(s, t, p2
1, 0, 0, 0; 0, ny, nz) (B.63)

→ 1
(4π)2st

[
C(−2)
47

ε2IR
+

C(−1)
47

εIR
+ C(0)

47 +O(εIR)

]
,

where

C(−2)
47 = A(−1)

0,ny+nz
(t̃)F (−1)

0,nz,ny

(
− ũ

s̃

)
, (B.64)

C(−1)
47
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= A(−1)
0,ny+nz

(t̃)F (0)
0,nz,ny

(
− ũ

s̃

)

+A(0)
0,ny+nz

(t̃)F (−1)
0,nz,ny

(
− ũ

s̃

)

+
nz∑

k1=0

ny+k1∑
k2=0

nz
Ck1ny+k1Ck2(−1)k1+k2

(
s

s− p2
1

)ny+k1

×A(−1)
0,ny+nz

(s̃)

×
[
F (0)

0,0,k2

(
− ũ

t̄

)

−
(
p2
1

s

)k2 (
F (0)

0,0,k2

(
− ũp̃1

2

t̄s̃

)

+ ln
(
p̃1

2

s̃

)
F (−1)

0,0,k2

(
− ũp̃1

2

t̄s̃

))]
, (B.65)

C(0)
47

= A(−1)
0,ny+nz

(t̃)F (1)
0,nz,ny

(
− ũ

s̃

)

+A(0)
0,ny+nz

(t̃)F (0)
0,nz,ny

(
− ũ

s̃

)

+A(1)
0,ny+nz

(t̃)F (−1)
0,nz,ny

(
− ũ

s̃

)

+
nz∑

k1=0

ny+k1∑
k2=0

nz
Ck1ny+k1Ck2(−1)k1+k2

(
s

s− p2
1

)ny+k1

×
[
A(−1)

0,ny+nz
(s̃)
(

F (1)
0,0,k2

(
− ũ

t̄

)

−
(
p2
1

s

)k2 (
F (1)

0,0,k2

(
− ũp̃1

2

t̄s̃

)

+ ln
(
p̃1

2

s̃

)
F (0)

0,0,k2

(
− ũp̃1

2

t̄s̃

)))

+A(0)
0,ny+nz

(s̃)
(

F (0)
0,0,k2

(
− ũ

t̄

)

−
(
p2
1

s

)k2 (
F (0)

0,0,k2

(
− ũp̃1

2

t̄s̃

)

+ ln
(
p̃1

2

s̃

)
F (−1)

0,0,k2

(
− ũp̃1

2

t̄s̃

)))]
. (B.66)

B.4.3 nx �= 0, ny = 0, nz = 0

When nx �= 0, and ny = nz = 0, the final result can be
written as

J4(s, t; p2
1, 0, 0, 0;nx, 0, 0)

=
1

(4π)2st
B(nx + εIR, εIR)nx!Γ (εIR)Γ (1 − εIR)

×
[( −t̃

4πµ2
R

)εIR (−t
s

)nx 1
Γ (nx + εIR)

I(1) (B.67)

+
( −s̃

4πµ2
R

)εIR nx∑
l=0

(−1)l

Γ (l + εIR)(nx − l)!
I(2)

l

]
.

The integrals I(1) and I(2) can be done easily:

I(1) = B(nx + εIR, 1)

×2F1

(
1 + nx, nx + εIR, 1 + nx + εIR,− ũ

s̃

)
, (B.68)

I(2)
0 =

1
εIR

[
2F1

(
1 + l, l + εIR, 1 + l + εIR,− ũ

t̄

)
(B.69)

−
(
p̃1

2

s̃

)εIR

2F1

(
1 + l, l + εIR, 1 + l + εIR,− ũp̃1

2

t̄s̃

)]
.

After an εIR expansionwith theMS scheme, it is obtained as

J4(s, t, p2
1, 0, 0, 0;nx, 0, 0) (B.70)

→ 1
(4π)2st

[
C(−2)
48

ε2IR
+

C(−1)
48

εIR
+ C(0)

48 +O(εIR)

]
,

where

C(−2)
48 = nx

(
− t

s

)nx

A(−1)
0,nx

(t̃)F (0)
nx,0,0

(
− ũ

s̃

)
(B.71)

+A(−1)
0,nx

(s̃)

[
F (−1)

0,0,0

(
− ũ

t̄

)
− F (−1)

0,0,0

(
− ũp̃1

2

t̄s̃

)

+
nx∑
l=1

l(−1)l
nx
Cl

(
F (0)

l,0,0

(
− ũ

t̄

)
− F (0)

l,0,0

(
− ũp̃1

2

t̄s̃

))]
,

C(−1)
48 = nx

(
− t

s

)nx

(B.72)

×
[
A(−1)

0,nx
(t̃)F (1)

nx,0,0

(
− ũ

s̃

)
+ A(0)

0,nx
(t̃)F (0)

nx,0,0

(
− ũ

s̃

)

− Hnx−1A(−1)
0,nx

(t̃)F (0)
nx,0,0

(
− ũ

s̃

)]

+A(−1)
0,nx

(s̃)
[
F (0)

0,0,0

(
− ũ

t̄

)
− F (0)

0,0,0

(
− ũp̃1

2

t̄s̃

)

− ln
(
p̃1

2

s̃

)
F (−1)

0,0,0

(
− ũp̃1

2

t̄s̃

)]

+A(0)
0,nx

(s̃)
[
F (−1)

0,0,0

(
− ũ

t̄

)
− F (−1)

0,0,0

(
− ũp̃1

2

t̄s̃

)]

+
nx∑
l=1

l(−1)l
nxCl

[
A(−1)

0,nx
(s̃)

×
(

F (1)
l,0,0

(
− ũ

t̄

)
− F (1)

l,0,0

(
− ũp̃1

2

t̄s̃

)
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− ln
(
p̃1

2

s̃

)
F (0)

l,0,0

(
− ũp̃1

2

t̄s̃

))

+
(
A(0)

0,nx
(s̃) − A(−1)

0,nx
(s̃)Hl−1

)

×
(

F (0)
l,0,0

(
− ũ

t̄

)
− F (0)

l,0,0

(
− ũp̃1

2

t̄s̃

))]
, (B.73)

C(0)
48 = nx

(
− t

s

)nx
[
A(−1)

0,nx
(t̃)F (2)

nx,0,0

(
− ũ

s̃

)

+A(0)
0,nx

(t̃)F (1)
nx,0,0

(
− ũ

s̃

)
+ A(1)

0,nx
(t̃)F (0)

nx,0,0

(
− ũ

s̃

)

−Hnx−1

(
A(−1)

0,nx
(t̃)F (1)

nx,0,0

(
− ũ

s̃

)

+ A(0)
0,nx

(t̃)F (0)
nx,0,0

(
− ũ

s̃

))

+
1
2

(
Hnx−1 +

π2

6
− ψ(1)

nx

)
A(−1)

0,nx
(s̃)F (0)

nx,0,0

(
− ũ

s̃

)]

+A(−1)
0,nx

(s̃)
[
F (1)

0,0,0

(
− ũ

t̄

)
− F (1)

0,0,0

(
− ũp̃1

2

t̄s̃

)

− ln
(
p̃1

2

s̃

)
F (0)

0,0,0

(
− ũp̃1

2

t̄s̃

)]

+A(0)
0,nx

(s̃)
[
F (0)

0,0,0

(
− ũ

t̄

)
− F (0)

0,0,0

(
− ũp̃1

2

t̄s̃

)

− ln
(
p̃1

2

s̃

)
F (−1)

0,0,0

(
− ũp̃1

2

t̄s̃

)]

+A(1)
0,nx

(s̃)
[
F (−1)

0,0,0

(
− ũ

t̄

)
− F (−1)

0,0,0

(
− ũp̃1

2

t̄s̃

)]

+
nx∑
l=1

l(−1)l
nx
Cl

[
A(−1)

0,nx
(s̃)
(

F (2)
l,0,0

(
− ũ

t̄

)

−F (2)
l,0,0

(
− ũp̃1

2

t̄s̃

)
− ln

(
p̃1

2

s̃

)
F (1)

l,0,0

(
− ũp̃1

2

t̄s̃

))

+
(
A(0)

0,nx
(s̃) − A(−1)

0,nx
(s̃)Hl−1

)

×
(

F (1)
l,0,0

(
− ũ

t̄

)
− F (1)

l,0,0

(
− ũp̃1

2

t̄s̃

)

− ln
(
p̃1

2

s̃

)
F (0)

l,0,0

(
− ũp̃1

2

t̄s̃

))

+
(
A(1)

0,nx
(s̃) − A(0)

0,nx
(s̃)Hl−1

+ A(−1)
0,nx

(s̃)
1
2

(
Hl−1 +

π2

6
− ψ

(1)
l

))

×
(

F (0)
l,0,0

(
− ũ

t̄

)
− F (0)

l,0,0

(
− ũp̃1

2

t̄s̃

))]
. (B.74)

B.4.4 nx �= 0, ny + nz ≥ 1

At last we treat the most general case with nx �= 0, and
ny + nz ≥ 1. The final result can be written as

J4(s, t; p2
1, 0, 0, 0;nx, ny, nz) =

1
(4π)2st

(B.75)

×B(nx + εIR, ny + nz + εIR)nx!Γ (εIR)Γ (1 − εIR)

×
[( −t̃

4πµ2
R

)εIR (−t
s

)nx 1
Γ (nx + εIR)

I(1)

+
( −s̃

4πµ2
R

)εIR nx∑
l=0

(−1)l

Γ (l + εIR)(nx − l)!
I(2)

l

]
,

where

I(1) = B(1 + nz, nx + ny + εIR)

× 2F1

(
1 + nx, nx + ny + εIR,

1 + nx + ny + nz + εIR,− ũ

s̃

)
, (B.76)

I(2)
l =

nz∑
k1=0

ny+k1∑
k2=0

nz
Ck1ny+k1Ck2(−1)k1+k2

×
(

s

s− p2
1

)ny+k1 1
l + k2 + εIR

(
1 +

u

t

)l

×
[
2F1

(
1 + l, l + k2 + εIR, 1 + l + k2 + εIR,− ũ

t̄

)

−
(
p̃1

2

s̃

)l+k2+εIR

× 2F1

(
1 + l, l + k2 + εIR,

1 + l + k2 + εIR,− ũp̃1
2

t̄s̃

)]
, (B.77)

In this case, the result might be IR finite. Then, after an
εIR expansion with the MS scheme, it becomes

J4(s, t, p2
1, 0, 0, 0;nx, ny, nz) → 1

(4π)2st

[
C(0)
49 +O(εIR)

]
,

(B.78)
where

C(0)
49 = nx

(
− t

s

)nx

×
[
A(0)

nx,ny+nz
(t̃)F (1)

nx,nz,ny

(
− ũ

s̃

)

+A(1)
nx,ny+nz

(t̃)F (0)
nx,nz,ny

(
− ũ

s̃

)

− Hnx−1A(0)
nx,ny+nz

(t̃)F (0)
nx,nz,ny

(
− ũ

s̃

)]
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+
nz∑

k1=0

ny+k1∑
k2=0

nzCk1ny+k1Ck2(−1)k1+k2

(
s

s− p2
1

)ny+k1

×
[
A(0)

nx,ny+nz
(s̃)

×
(

F (0)
0,0,k2

(
− ũ

t̄

)
−
(
p2
1

s

)k2 (
F (0)

0,0,k2

(
− ũp̃1

2

t̄s̃

)

+ ln
(
p̃1

2

s̃

)
F (−1)

0,0,k2

(
− ũp̃1

2

t̄s̃

)))

+A(1)
nx,ny+nz

(s̃)

×
(

F (−1)
0,0,k2

(
− ũ

t̄

)
−
(
p2
1

s

)k2

F (−1)
0,0,k2

(
− ũp̃1

2

t̄s̃

))]

+
nx∑
l=1

l(−1)l
nxCl

(
1 +

u

t

)l

×
nz∑

k1=0

ny+k1∑
k2=0

nzCk1ny+k1Ck2(−1)k1+k2

(
s

s− p2
1

)ny+k1

×
[
A(0)

nx,ny+nz
(s̃)

×
(

F (1)
l,0,k2

(
− ũ

t̄

)
−
(
p2
1

s

)l+k2 (
F (1)

l,0,k2

(
− ũp̃1

2

t̄s̃

)

+ ln
(
p̃1

2

s̃

)
F (0)

l,0,k2

(
− ũp̃1

2

t̄s̃

)))

×
(
A(1)

nx,ny+nz
(s̃) − A(0)

nx,ny+nz
(s̃)Hl−1

)
(B.79)

×
(

F (0)
l,0,k2

(
− ũ

t̄

)
−
(
p2
1

s

)l+k2

F (0)
l,0,k2

(
− ũp̃1

2

t̄s̃

))]
.
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